Cell entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its surface glycoprotein, Spike. The S1 subunit of Spike contains the N-terminal domain (NTD) and the receptor-binding domain (RBD), which mediates recognition of the host cell receptor angiotensinconverting enzyme 2 (ACE2). The S2 subunit drives fusion
ART initiated in early acute HIV infection was associated with normalization of the coagulation cascade and several systemic inflammatory biomarkers, but the acute-phase response, enterocyte turnover, monocyte activation, and fibrosis biomarkers remained elevated. Additional interventions to attenuate inflammation may be needed to optimize clinical outcomes in persons with HIV infection.
Highlights d Multiple MPER-directed bNAb lineages developed in a single individual d The broadest lineage belongs to the same antibody class as the 4E10 antibody d Low levels of somatic hypermutation of the RV217-VRC42 lineage can impart breadth d A multimeric immunogen activates VRC42 precursor B cells
Prevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.