Osteoarthritis (OA) is a degenerative joint disease that involves the destruction of articular cartilage and eventually leads to disability. Molecules that promote the selective differentiation of multipotent mesenchymal stem cells (MSCs) into chondrocytes may stimulate the repair of damaged cartilage. Using an image-based high-throughput screen, we identified the small molecule kartogenin, which promotes chondrocyte differentiation (median effective concentration = 100 nM), shows chondroprotective effects in vitro, and is efficacious in two OA animal models. Kartogenin binds filamin A, disrupts its interaction with the transcription factor core-binding factor β subunit (CBFβ), and induces chondrogenesis by regulating the CBFβ-RUNX1 transcriptional program. This work provides new insights into the control of chondrogenesis that may ultimately lead to a stem cell-based therapy for osteoarthritis.
The events that occur during the fusion of double-membraned mitochondria are unknown. As an essential step toward determining the mechanism of mitochondrial fusion, we have captured this event in vitro. Mitochondrial outer and inner membrane fusion events were separable and mechanistically distinct, but both required guanosine 5'-triphosphate hydrolysis. Homotypic trans interactions of the ancient outer transmembrane guanosine triphosphatase, Fzo1, were required to promote the fusion of mitochondrial outer membranes, whereas electrical potential was also required for fusion of inner membranes. Our conclusions provide fundamental insights into the molecular events driving mitochondrial fusion and advance our understanding of the evolution of mitochondrial fusion in eukaryotic cells.
Mitochondrial outer- and inner-membrane fusion events are coupled in vivo but separable and mechanistically distinct in vitro, indicating that separate fusion machines exist in each membrane. Outer-membrane fusion requires trans interactions of the dynamin-related GTPase Fzo1, GTP hydrolysis, and an intact inner-membrane proton gradient. Inner-membrane fusion also requires GTP hydrolysis but distinctly requires an inner-membrane electrical potential. The protein machinery responsible for inner-membrane fusion is unknown. Here, we show that the conserved intermembrane-space dynamin-related GTPase Mgm1 is required to tether and fuse mitochondrial inner membranes. We observe an additional role of Mgm1 in inner-membrane dynamics, specifically in the maintenance of crista structures. We present evidence that trans Mgm1 interactions on opposing inner membranes function similarly to tether and fuse inner membranes as well as maintain crista structures and propose a model for how the mitochondrial dynamins function to facilitate fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.