Introduction Microbial contamination of the hospital environment plays an important role in the spread of healthcare-associated infections (HCAIs). This study was conducted to determine bacterial contamination, bacterial profiles, and antimicrobial susceptibility pattern of bacterial isolates from environmental surfaces and medical equipment. Methods A cross-sectional study was conducted at Tikur Anbessa Specialized Hospital (TASH) from June to September 2018. A total of 164 inanimate surfaces located at intensive care units (ICUs) and operation theaters (OTs) were swabbed. All isolates were identified by using routine bacterial culture, Gram staining, and a panel of biochemical tests. For each identified bacteria, antibiogram profiles were determined by the Kirby–Bauer disk diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). Results Out of the 164 swabbed samples, 141 (86%) were positive for bacterial growth. The predominant bacteria identified from OTs and ICUs were Staphylococci aureus (23% vs 11.5%), Acinetobacter baumannii (3.8% vs 17.5%) and coagulase-negative Staphylococcus (CoNS) (12.6% vs 2.7%) respectively. Linens were the most contaminated materials among items studied at the hospital (14.8%). Gram-positive bacteria (GPB) had significantly high resistance levels to penicillin (92.8%), cefoxitin (83.5%), and erythromycin (53.6%). On the other hand, Gram-negative bacteria (GNB) revealed the highest resistance levels to ampicillin (97.5%), ceftazidime (91.3%), ceftriaxone (91.3%), and aztreonam (90%). However, a low resistance level was recorded for amikacin (25%) followed by Ciprofloxacin (37.5%). Of the 63 S. aureus isolates, 54 (85.7%) were methicillin-resistant S. aureus (MRSA). Conclusion The inanimate surfaces and commonly touched medical equipment within OTs and ICUs are reservoirs of potentially pathogenic bacteria that could predispose critically ill patients to acquire HCAIs. The proportions of the antimicrobial resistance profile of the isolates are much higher from studied clean inanimate environments.
Klebsiella pneumoniae poses an urgent public health threat, causing nosocomial outbreaks in different continents. It has been observed to develop resistance to antimicrobials more easily than most bacteria. These days, multidrug-resistant strains are being increasingly reported from different countries. However, studies on the surveillance of multidrug-resistant Klebsiella pneumoniae are very rare in Ethiopia. This study aimed to determine the antimicrobial resistance patterns and magnitude of MDR K. pneumoniae isolates from patients attending or admitted to Tikur Anbessa Specialized Hospital (TASH). A cross-sectional study was conducted from September 2018 to February 2019 at TASH, Addis Ababa, Ethiopia. Identification of K. pneumoniae was done by examining the Gram stain, colony characteristics on MacConkey agar and 5% sheep blood agar, as well as using a series of biochemical tests. Antimicrobial susceptibility testing of the isolates for 21 antimicrobials was done by the Kirby–Bauer disc diffusion technique. Data were double entered using Epidata 3.1 and exported to SPSS version 25 software for analysis. Among the total K. pneumoniae isolates (n = 132), almost all 130 (98.5%) were MDR. Two (1.5%) isolates showed complete non-susceptibility to all antimicrobial agents tested. Moreover, a high rate of resistance was observed to cefotaxime and ceftriaxone 128 (97%), trimethoprim-sulfamethoxazole 124 (93.9%), and cefepime 111 (84.1%). High susceptibility was recorded to amikacin 123 (93.2%), imipenem 107 (81.1%), meropenem 96 (72.7%), and ertapenem 93 (70.5%). K. pneumoniae isolates showed a high rate of resistance to most of the tested antimicrobials. The magnitude of MDR K. pneumoniae was very alarming. Therefore, strengthening antimicrobial stewardship programs and antimicrobial surveillance practices is strongly recommended in TASH.
Background Production of Extended spectrum beta-lactamase (ESBL) and Carbapenemase is the most common strategy for drug resistance in clinical isolates of Enterobacteriaceae . This study was conducted to determine the magnitude of ESBL and Carbapenemase production (CPE) among clinical isolates of Enterobacteriaceae causing bloodstream infections (BSI) in Ethiopia. Methods A cross-sectional study was performed from September 2018 to January 2019 in Ethiopia. A total of 2397 BSI suspected patients were enrolled and blood culture was performed using a BacT/Alert instrument in combination with conventional methods for identification. After antimicrobial susceptibility test, phenotypic confirmation of ESBLs was done by combined disc-diffusion. Meanwhile carbapenemase production was done by modified carbapenem inactivation method. Multiplex PCR was conducted to detect the presence of bla CTX-M , bla SHV, bla TEM , bla KPC and bla NDM genes. Results A total of 104 (4.3%) Enterobacteriaceae were isolated from 2397 BSI suspected patients. Klebsiella pneumoniae (55/104, 52%) was the predominant isolate followed by E. coli , (19.2%, 20/104) and K.oxytoca (17.3%, 18/104). ESBL and carbapenemase production were observed from 70 (67.3%, 57.4 −76.2% at 95% CI) and 8 (7.7%, 3.4–14.6% at 95% CI) isolates respectively. The highest frequency of ESBL and carbapenemase production was observed in K. pneumoniae 78.2% (43/55) and 9.1% (5/55), respectively. All the 70 isolates confirmed as ESBL producers harbored at least one of the ESBL genes and the majority of them carried multiple beta-lactamase genes (84.3%), where bla CTX-M, type was the most predominant (67.3%). Similarly, the entire eight isolates positive for carbapenemase carried bla NDM but none of them carried bla KPC. Conclusion In our study, the rate of ESBL production among BSI-causing Enterobacteriaceae was alarming and most of the isolates carried multiple types of ESBL genes. A significant magnitude of CPE isolates causing BSI was recorded.
Microbial contamination of hospital environment plays an important role in the spread of health care-associated infections (HCAIs). This study was conducted to determine bacterial contamination, bacterial profiles and antimicrobial susceptibility pattern of bacterial isolates from environmental surfaces and medical equipment. A cross-sectional study was conducted at Tikur Anbessa Specialized Hospital (TASH) from June to September, 2018. A total of 164 inanimate surfaces located at intensive care units (ICUs) and operation theaters (OTs) were swabbed. All isolates were identified by using routine bacterial culture, Gram staining and a panel of biochemical tests. For each identified bacteria, antibiogram profiles were determined by the Kirby Bauer disk diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). Out of the 164 swabbed samples, 141 (86%) were positive for bacterial growth. The predominant bacteria identified from OTs and ICUs were S. aureus (23% vs 11.5%), Acinetobacter spp (3.8% vs 17.5%) and Coagulase negative Staphylococcus (CONS) (12.6% vs 2.7%) respectively. Linens were the most contaminated materials among items studied at the hospital (14.8%). The proportions of resistance among Gram-positive bacteria (GPB) were high for penicillin (92.8%), cefoxitin (83.5%) and erythromycin (54.1%). However, the most effective antibiotics were clindamycin with only 10.4% and 16.5% resistance rates, respectively. The antimicrobial susceptibility profiles of Gram-negative bacteria (GNB) revealed that the most effective antibiotics were amikacin, ciprofloxacin, and gentamicin with resistance rate of 25%, 37.5%, and 46.3%, respectively. However, the highest resistance was recorded against ampicillin (97.5%), ceftazidime (91.3%), ceftriaxone (91.3%) and aztreonam (90%). The inanimate surfaces near immediate patient environment and commonly touched medical equipment within OTs and ICUs are reservoirs of potential pathogenic bacteria that could predispose critically ill patients to acquire HCAIs. The proportions of antimicrobial resistance profile of the isolates are much higher from studied clean inanimate environments.
Background Infections caused by Klebsiella pneumoniae have been difficult to control because of the worldwide emergence of carbapenem-resistant isolates mainly due to carbapenemase production. Information regarding carbapenemase-producing K. pneumoniae is still scarce in Ethiopia. Therefore, the current study aimed to determine the prevalence of carbapenemase-producing K. pneumoniae and to assess the occurrence of blaNDM and blaKPC carbapenemase genes. Methods A cross-sectional study was conducted from September 2018 to February 2019 at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia. A total of 132 non-duplicate K. pneumoniae isolates were studied. Phenotypic confirmation of carbapenemase production was done by modified Carbapenem Inactivation Method (mCIM). Multiplex PCR was performed for the detection of carbapenemase-encoding genes blaKPC, and blaNDM. Results Out of the total 132 K. pneumoniae isolates, 39 (29.6%) were non-susceptible to one or more carbapenems. The prevalence of carbapenemase-producing isolates from the total was 28 (21.2%) with mCIM of which the most dominant gene was blaNDM 26 (92.9%) and one isolate carried blaKPC concomitantly. Carbapenemase-producing K. pneumoniae isolates were 100% non-susceptible to half of the antimicrobials used in the study, including meropenem and ertapenem. Previous use of carbapenems was associated with carbapenemase production (P = 0.004). Conclusions The prevalence of carbapenemase-producing K. pneumoniae isolates was worrying in the study area. To our knowledge, the study described the emergence of blaNDM and blaKPC gene carrying K. pneumoniae in Ethiopia for the first time. Further large-scale molecular-based studies, including other carbapenemase genes and sequencing of K. pneumoniae, are warranted to have a clear awareness about the presence of antimicrobial resistance high-risk clones in Ethiopia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.