The conjugates of gold nanorods and the model drug, fluorescein isothiocyanate (FITC), embedded inside polyelectrolytes (GNRs/FITC@PLE) were synthesized to study the release kinetics of FITC under femtosecond near-infrared (NIR) laser irradiation. The optical and structural properties of GNRs/FITC@PLE conjugates before and after laser treatments were examined using UV-vis spectroscopy, confocal microscopy, and transmission electron microscopy (TEM). The release of FITC from the conjugates was induced by the heat generated from gold nanorods under laser irradiation. The concentration of released FITC was measured as the time of continuous and periodic laser irradiation was varied. Within 5 min of the laser exposure, the release rates of FITC exhibited zero-order and first-order kinetics under continuous and periodic irradiation, respectively. Furthermore, a drug release system was designed based on the conjugates of gold nanorods and the anticancer drug, paclitaxel (PTX), embedded inside polyelectrolytes (GNRs/PTX@PLE). The conjugates were applied for in vitro studies with breast cancer cells. The release of PTX from the conjugates was triggered by NIR laser irradiation, and the inhibition rates of the cells showed strong dependencies on the irradiation modes and time. The results suggested that the multiple releases of PTX from the conjugates can be controlled by laser irradiation within a long period of time. Our system holds great potential for future therapeutic applications on breast cancers.
Highlights d The hair follicle instructs the formation of the APMsympathetic nerve unit via SHH d APM maintains sympathetic innervation to HFSCs d Sympathetic nerve activates HFSCs via synapse-like contacts and norepinephrine d Cold stimulates not only goosebumps but also hair growth
Introduction
There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer.
Areas covered
Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells.
Expert opinion
Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.