SummaryEmbryonic stem cells (ESCs) are unique in that they have the capacity to differentiate into all of the cell types in the body. We know a lot about the complex transcriptional control circuits that maintain the naive pluripotent state under self-renewing conditions but comparatively less about how cells exit from this state in response to differentiation stimuli. Here, we examined the role of Otx2 in this process in mouse ESCs and demonstrate that it plays a leading role in remodeling the gene regulatory networks as cells exit from ground state pluripotency. Otx2 drives enhancer activation through affecting chromatin marks and the activity of associated genes. Mechanistically, Oct4 is required for Otx2 expression, and reciprocally, Otx2 is required for efficient Oct4 recruitment to many enhancer regions. Therefore, the Oct4-Otx2 regulatory axis actively establishes a new regulatory chromatin landscape during the early events that accompany exit from ground state pluripotency.
The transcriptional status of eukaryotic genes is determined by a balance between activation and repression mechanisms. The nuclear hormone receptors represent classical examples of transcription factors that can regulate this balance by recruiting corepressor and coactivator complexes in a ligand-dependent manner. Here, we demonstrate that the equilibrium between activation and repression via a single transcription factor, Elk-1, is altered following activation of the Erk mitogen-activated protein kinase cascade. In addition to its Cterminal transcriptional activation domain, Elk-1 contains an N-terminal transcriptional repression domain that can recruit the mSin3A-histone deacetylase 1 corepressor complex. Recruitment of this corepressor is enhanced in response to activation of the Erk pathway in vivo, and this recruitment correlates kinetically with the shutoff of one of its target promoters, c-fos. Elk-1 therefore undergoes temporal activator-repressor switching and contributes to both the activation and repression of target genes following growth factor stimulation.
Embryonic stem cells (ESCs) are pluripotent in nature, meaning that they have the capacity to differentiate into any cell in the body. However, to do so they must transition through a series of intermediate cell states before becoming terminally differentiated. A lot is known about how ESCs maintain their pluripotent state but comparatively less about how they exit this state and begin the transition towards differentiated cells. Here we investigated the earliest events in this transition by determining the changes in the open chromatin landscape as naïve mouse ESCs transition to epiblast-like cells (EpiLCs). Motif enrichment analysis of the newly opening regions coupled with expression analysis identified ZIC3 as a potential regulator of this cell fate transition. Chromatin binding and genome-wide transcriptional profiling confirmed ZIC3 as an important regulatory transcription factor and among its targets are genes encoding a number of transcription factors. Among these is GRHL2 which acts through enhancer switching to maintain the expression of a subset of genes from the ESC state. Our data therefore place ZIC3 at the top of a cascade of transcriptional regulators and provide an important advance in our understanding of the regulatory factors governing the earliest steps in ESC differentiation. 3
Embryonic stem cells (ESC) are able to give rise to any somatic cell type. A lot is known about how ESC pluripotency is maintained, but comparatively less is known about how differentiation is promoted. Cell fate decisions are regulated by interactions between signaling and transcriptional networks. Recent studies have shown that the overexpression or downregulation of the transcription factor Jun can affect the ESC fate. Here we have focussed on the role of the Jun in the exit of mouse ESCs from ground state pluripotency and the onset of early differentiation. Transcriptomic analysis of differentiating ESCs reveals that Jun is required to upregulate a programme of genes associated with cell adhesion as ESCs exit the pluripotent ground state. Several of these Jun‐regulated genes are shown to be required for efficient adhesion. Importantly this adhesion is required for the timely regulated exit of ESCs from ground state pluripotency and the onset of early differentiation events. Stem Cells 2016;34:1213–1224
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.