Facemasks are considered safe and wearable devices that cover the human mouth and nose for filtering exhaled aerosols and inhaled environmental exposures; various chemical and environmental residues thus can remain in facemasks. Therefore, direct analysis of residues in facemasks can be used to investigate the wearer's health and behavior. Here, we developed a simple paper-infacemask sampling method for adsorbing a wearer's respiratory aerosol and environmental exposures by fixing paper strips at the outside and inside surfaces of facemasks, and the paper strips were then analyzed by paper spray mass spectrometry (PSMS) for directly detecting adsorbed analytes without any sample pretreatment. The applicability of this device was demonstrated by directly analyzing exhaled aerosolized saliva, breath metabolites, and inhalable environmental exposures. The technical aspects, including sampling time, sampling position, paper property, and spray solvent, were investigated. The sampling process was revealed to involve a continuous-flow adsorptive mechanism. These findings motivated us to extend this work and build a wearable sampling device that is capable of simultaneously monitoring both exhaled and inhaled biomarkers in situ to investigate human health and environmental exposure. This work highlights that facemasks are promising platforms for aerosol collection and direct MS analysis, which is expected to be a promising method for monitoring human health, diseases, and behaviors.
Direct mass spectrometry (MS) analysis of human tissue at the molecular level could gain insight into biomarker discovery and disease diagnosis. Detecting metabolite profiles of tissue sample play an important role in understanding the pathological properties of disease development. Because the complex matrices in tissue samples, complicated and time-consuming sample preparation processes are usually required by conventional biological and clinical MS methods. Direct MS with ambient ionization technique is a new analytical strategy for direct sample analysis with little sample preparation, and has been proven to be a simple, rapid, and effective analytical tools for direct analysis of biological tissues. In this work, we applied a simple, low-cost, disposable wooden tip (WT) for loading tiny thyroid tissue, and then loading organic solvents to extract biomarkers under electrospray ionization (ESI) condition. Under such WT-ESI, the extract of thyroid was directly sprayed out from wooden tip to MS inlet. In this work, thyroid tissue from normal and cancer parts were analyzed by the established WT-ESI-MS, showing lipids were mainly detectable compounds in thyroid tissue. The MS data of lipids obtained from thyroid tissues were further analyzed with MS/MS experiment and multivariate variable analysis, and the biomarkers of thyroid cancer were also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.