The electrical and optical properties of the defect traps, with and without annealing, in InAs/GaAs quantum dots (QDs) emitting at 1.3 µm are investigated by capacitance-voltage (C-V), deep-level transient spectroscopy (DLTS) and photoluminescence (PL). When increasing the InAs thickness to 3 ML, an abnormal temperature dependence of the C-V characteristic was observed in the triple-stack InAs/GaAs QD sample. This temperature dependence is attributed to the defect levels at 0.39 and 0.54 eV observed in DLTS. The level at 0.39 eV, found in the top GaAs barrier, is probably related to the relaxation-induced dislocations. The level at 0.54 eV is found close to the QD region. Rapid thermal annealing can reduce the concentrations of both levels. Comparing with PL result, which shows a blueshift of 140 meV and linewidth narrowing in the QD emission by annealing at 800°C, the level at 0.54 eV is speculated to be strain- or relaxation-related defects in the interface between the QDs and the barrier. Removal of this level by high-temperature RTA is important since this level lies close to the QDs and influences the optical quality of the QDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.