Virtual geographic environments (VGEs) are extensively used to explore the relationship between humans and environments. Crowd simulation provides a method for VGEs to represent crowd behaviors that are observed in the real world. The social force model (SFM) can simulate interactions among individuals, but it has not sufficiently accounted for inter-group and intra-group behaviors which are important components of crowd dynamics. We present the social group force model (SGFM), based on an extended SFM, to simulate group behaviors in VGEs with focuses on the avoiding behaviors among different social groups and the coordinate behaviors among subgroups that belong to one social group. In our model, psychological repulsions between social groups make them avoid with the whole group and group members can stick together as much as possible; while social groups are separated into several subgroups, the rear subgroups try to catch up and keep the whole group cohesive. We compare the simulation results of the SGFM with the extended SFM and the phenomena in videos. Then we discuss the function of Virtual Reality (VR) in crowd simulation visualization. The results indicate that the SGFM can enhance social group behaviors in crowd dynamics.
Due to their strong immersion and real-time interactivity, helmet-mounted virtual reality (VR) devices are becoming increasingly popular. Based on these devices, an immersive virtual geographic environment (VGE) provides a promising method for research into crowd behavior in an emergency. However, the current cheaper helmet-mounted VR devices are not popular enough, and will continue to coexist with personal computer (PC)-based systems for a long time. Therefore, a heterogeneous distributed virtual geographic environment (HDVGE) could be a feasible solution to the heterogeneous problems caused by various types of clients, and support the implementation of spatiotemporal crowd behavior experiments with large numbers of concurrent participants. In this study, we developed an HDVGE framework, and put forward a set of design principles to define the similarities between the real world and the VGE. We discussed the HDVGE architecture, and proposed an abstract interaction layer, a protocol-based interaction algorithm, and an adjusted dead reckoning algorithm to solve the heterogeneous distributed problems. We then implemented an HDVGE prototype system focusing on subway fire evacuation experiments. Two types of clients are considered in the system: PC, and all-in-one VR. Finally, we evaluated the performances of the prototype system and the key algorithms. The results showed that in a low-latency local area network (LAN) environment, the prototype system can smoothly support 90 concurrent users consisting of PC and all-in-one VR clients. HDVGE provides a feasible solution for studying not only spatiotemporal crowd behaviors in normal conditions, but also evacuation behaviors in emergency conditions such as fires and earthquakes. HDVGE could also serve as a new means of obtaining observational data about individual and group behavior in support of human geography research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.