Maltodextrin (MD), the hydrolyzed starch product, is a promising alternative ingredient to improve the quality of starch-based foods. The effects of MD on the physicochemical, microstructural, and cooking properties of sweet potato starch (SPS) noodles, as well as the mechanism of SPS-MD interactions, are discussed. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results indicated that MD at a suitable concentration can improve the ordered structure of SPS-MD gels. The cooking loss showed lower values of 1.47–2.16% at 0.5–2.0 wt% MD. For the texture properties, an increase in hardness and chewiness occurred at first with the addition of MD, followed by a decreasing trend, showing a maximum value at 2.0 wt% of MD. The pasting and thermal results verified the increased stability of the starch granules with MD < 3 wt%. Additionally, SPS formed a solid-like gel with MD, and the main interaction forces between SPS and MD were hydrogen bonding. The scanning electron microscopy results revealed that the higher concentrations of MD (>3 wt%) loosened the gel structure and markedly increased the pore size. These results help us to better understand the interaction mechanism of the SPS-MD complex and facilitate the development of SPS-based gel products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.