Edge computing is providing higher class intelligent service and computing capabilities at the edge of the network. The aim is to ease the backhaul impacts and offer an improved user experience, however, the edge artificial intelligence exacerbates the security of the cloud computing environment due to the dissociation of data, access control and service stages. In order to prevent users from using the edge-cloud computing environment to carry out lateral movement attacks, we proposed a method named CloudSEC meaning real time lateral movement detection based on evidence reasoning network for the edge-cloud environment. The concept of vulnerability correlation is introduced. Based on the vulnerability knowledge and environmental information of the network system, the evidence reasoning network is constructed, and the lateral movement reasoning ability provided by the evidence reasoning network is used. CloudSEC realizes the reconfiguration of the efficient real-time attack process. The experiment shows that the results are complete and credible.
Conducting reputation management is very important for Internet of vehicles. However, most of the existing researches evaluate the effectiveness of their schemes with settled attacking behaviors in their simulation which cannot represent the scenarios in reality. In this paper, we propose to consider dynamical and diversity attacking strategies in the simulation of reputation management scheme evaluation. To that end, we apply evolutionary game theory to model the evolution process of malicious users' attacking strategies, and discuss the methodology of the evaluation simulations. We further apply our evaluation method to a reputation management scheme with multiple utility functions, and discuss the evaluation results. The results indicate that our evaluation method is able to depict the evolving process of the dynamic attacking strategies in a vehicular network, and the final state of the simulation could be used to quantify the protection effectiveness of the reputation management scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.