A novel photocaged PI3K inhibitor 2 was designed and synthesized by introducing a cascade photocaging group to block its key interaction with the kinase. Upon UV light irradiation, the photocaged compound released a highly potent PI3K inhibitor to recover its anticancer properties and a fluorescent dye for real-time reporting of drug release, providing a new approach for studying the PI3K signaling transduction pathway as well as developing precisely controlled cancer therapeutics.
The metabolic enzymes involved in one-carbon metabolism are closely associated with tumor progression and could be potential targets for cancer therapy. Recent studies showed that serine hydroxymethyltransferase 2 (SHMT2), a crucial enzyme in the one-carbon metabolic pathway, plays a key role in tumor proliferation and development. However, the precise role and function of SHMT2 in gastric cancer (GC) remain poorly understood. In this study, we presented evidence that SHMT2 was necessary for hypoxia-inducible factor-1α (HIF1α) stability and contributed to GC cells’ hypoxic adaptation. The analysis of datasets retrieved from The Cancer Genome Atlas and the experimentation with human cell lines revealed a marked increase in SHMT2 expression in GC. The SHMT2 knockdown in MGC803, SGC7901, and HGC27 cell lines inhibited cell proliferation, colony formation, invasion, and migration. Notably, SHMT2 depletion disrupted redox homeostasis and caused glycolytic function loss in GC cells under hypoxic circumstances. Mechanistically, we discovered SHMT2 modulated HIF1α stability, which acted as a master regulator of hypoxia-inducible genes under hypoxic conditions. This, in turn, regulated the downstream VEGF and STAT3 pathways. The in vivo xenograft experiments showed that SHMT2 knockdown markedly reduced GC growth. Our results elucidate the novel function of SHMT2 in stabilizing HIF1α under hypoxic conditions, thus providing a potential therapeutic strategy for GC treatment.
Microtubule-targeting agents are widely used as active anticancer drugs. However, drug resistance always emerges after their long-term use, especially in the case of paclitaxel, which is the cornerstone of all subtypes of breast cancer treatment. Hence, the development of novel agents to overcome this resistance is vital. This study reports on a novel, potent, and orally bioavailable tubulin inhibitor called S-72 and evaluated its preclinical efficacy in combating paclitaxel resistance in breast cancer and the molecular mechanisms behind it. We found that S-72 suppresses the proliferation, invasion and migration of paclitaxel-resistant breast cancer cells in vitro and displays desirable antitumor activities against xenografts in vivo. As a characterized tubulin inhibitor, S-72 typically inhibits tubulin polymerization and further triggers mitosis-phase cell cycle arrest and cell apoptosis, in addition to suppressing STAT3 signaling. Further studies showed that STING signaling is involved in paclitaxel resistance, and S-72 blocks STING activation in paclitaxel-resistant breast cancer cells. This effect further restores multipolar spindle formation and causes deadly chromosomal instability in cells. Our study offers a promising novel microtubule-destabilizing agent for paclitaxel-resistant breast cancer treatment as well as a potential strategy that can be used to improve paclitaxel sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.