Background: Three-dimensional (3D) printing is promising in medical applications, especially presurgical planning and the simulation of congenital heart disease (CHD). Thus, it is clinically important to generate highly accurate 3D-printed models in replicating cardiac anatomy and defects. The present study aimed to investigate the accuracy of the 3D-printed CHD model by comparing them with computed tomography (CT) images and standard tessellation language (STL) files. Methods: Three models were printed, comprising different CHD pathologies, including the tetralogy of Fallot (ToF), ventricular septal defect (VSD) and double-outlet right-ventricle (DORV). The ten anatomical locations were measured in each comparison. Pearson’s correlation coefficient, Bland–Altman analysis and intra-class correlation coefficient (ICC) determined the model accuracy. Results: All measurements with three printed models showed a strong correlation (r = 0.99) and excellent reliability (ICC = 0.97) when compared to original CT images, CT images of the 3D-printed models, STL files and 3D-printed CHD models. Conclusion: This study demonstrated the high accuracy of 3D-printed heart models with excellent correlation and reliability when compared to multiple source data. Further investigation into 3D printing in CHD should focus on the clinical value and the benefits to patients.
BackgroundAlthough the diagnosis of heart disease has improved with the rapid development of scanning techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and echocardiography, there are still limitations in diagnosing patients with congenital heart disease (CHD) due to its complex morphology. AimsThe aim of this study is to use a preserved pig heart for conducting phantom experiments and creating a highly accurate 3D model using 3D printing technique. MethodsA palatinate pig heart was used in the phantom experiments to investigate the accuracy of the 3D printed model in comparison with the CT images and 3D segmentation files as well as the real object of the pig's heart. ResultsEight comparisons and scatter plots were generated from six different datasets consisting of pig heart, 3D printed model, two standard tessellation language (STL) files and two CT images data. A strong correlation (r=0.99) was noted in each scatter plot while pig heart and 3D printed model averaging 0.21mm in difference. ConclusionThis study has shown that the 3D model which was printed with a pig heart has high accuracy in replicating normal cardiac anatomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.