Performance of an electronic device relies heavily on the availability of a suitable functional material. One of the simple, easy, and cost-effective ways to obtain novel functional materials with improved properties for desired applications is to make composites of selected materials. In this work, a novel composite of transparent n-type zinc oxide (ZnO) with a wide bandgap and a unique structure of graphene in the form of a graphene flower (GrF) is synthesized and used as the functional layer of a humidity sensor. The (GrF/ZnO) composite was synthesized by a simple sol–gel method. Morphological, elemental, and structural characterizations of GrF/ZnO composite were performed by a field emission scanning electron microscope (FESEM), energy-dispersive spectroscopy (EDS), and an x-ray diffractometer (XRD), respectively, to fully understand the properties of this newly synthesized functional material. The proposed humidity sensor was tested in the relative humidity (RH) range of 15% RH% to 86% RH%. The demonstrated sensor illustrated a highly sensitive response to humidity with an average current change of 7.77 μA/RH%. Other prominent characteristics shown by this device include but were not limited to high stability, repeatable results, fast response, and quick recovery time. The proposed humidity sensor was highly sensitive to human breathing, thus making it a promising candidate for various applications related to health monitoring.
A novel composite based on a polymer (P(VDF-TrFE)) and a two-dimensional material (graphene flower) was proposed as the active layer of an interdigitated electrode (IDEs) based humidity sensor. Silver (Ag) IDEs were screen printed on a flexible polyethylene terephthalate (PET) substrate followed by spin coating the active layer of P(VDF-TrFE)/graphene flower on its surface. It was observed that this sensor responds to a wide relative humidity range (RH%) of 8–98% with a fast response and recovery time of 0.8 s and 2.5 s for the capacitance, respectively. The fabricated sensor displayed an inversely proportional response between capacitance and RH%, while a directly proportional relationship was observed between its impedance and RH%. P(VDF-TrFE)/graphene flower-based flexible humidity sensor exhibited high sensitivity with an average change of capacitance as 0.0558 pF/RH%. Stability of obtained results was monitored for two weeks without any considerable change in the original values, signifying its high reliability. Various chemical, morphological, and electrical characterizations were performed to comprehensively study the humidity-sensing behavior of this advanced composite. The fabricated sensor was successfully used for the applications of health monitoring and measuring the water content in the environment.
One of the major causes of excess CO2 in the atmosphere is the direct burning of biomass waste, which can be obviated by the photocatalytic biomass conversion to useful/valuable chemicals/fuels, a sustainable and renewable approach. The present research work is focused on the development of a novel Zn–Fe LDH by a simple co-precipitation method and its utilization for the photocatalytic conversion of a rice husk extract (extracted from rice husk by means of pyrolysis) to value-added products. The synthesized, pure Zn–Fe LDH was characterized by various analytical techniques such as XRD, SEM, FTIR, and UV–Visible DRS spectroscopy. The rice husk extract was converted in a photocatalytic reactor under irradiation with 75 W white light, and the valued-added chemicals were analyzed by gas chromatography–mass spectrometry (GC–MS). It was found that the compounds in the rice husk extract before the photocatalytic reaction were mainly carboxylic acids, phenols, alcohols, alkanes (in a small amount), aldehydes, ketones, and amines. After the photocatalytic reaction, all the carboxylic acids and phenols were completely converted into alkanes by complex reactions. Hence, photocatalytic biomass conversion of a rice husk extract was successfully carried out in the present experimental work, opening new avenues for the development of related research domains, with a great potential for obtaining an alternate fuel and overcoming environmental pollution.
Two-dimensional (2D) materials and their composites have gained significant importance as the functional layer of various environmental sensors and nanoelectronics owing to their unique properties. This work reports for the first time a highly sensitive, fast, and stable humidity sensor based on the bi-layered active sensing area composed of graphene flower (GF) and poly (vinyl alcohol) PVA thin films for multifunctional applications. The GF/PVA humidity sensor exhibited stable impedance response over 15 days, for a relative humidity (RH) range of (40–90% RH) under ambient operating conditions. The proposed bi-layered humidity sensor also exhibited an ultra-high capacitive sensitivity response of the 29 nF/%RH at 10 kHz and fast transient response of 2 s and 3.5 s, respectively. Furthermore, the reported sensor also showed a good response towards multi-functional applications such as non-contact skin humidity and mouth breathing detection.
Biopolymers are a solution to solve the increasing problems caused by the advances and revolution in the electronic industry owing to the use of hazardous chemicals. In this work, we have used egg white (EW) as the low-cost functional layer of a biocompatible humidity sensor and deposited it on gold (Au) interdigitated electrodes (IDEs) patterned through the state-of-the-art fabrication technology of thermal vacuum evaporation. The presence of hydrophilic proteins inside the thin film of EW makes it an attractive candidate for sensing humidity. Usually, the dependence of the percentage of relative humidity (%RH) on the reliability of measurement setup is overlooked for impedimetric humidity sensors but we have used a modified experimental setup to enhance the uniformity of the obtained results. The characteristics of our device include almost linear response with a quick response time (1.2 s) and fast recovery time (1.7 s). High sensitivity of 50 kΩ/%RH was achieved in the desirable detection range of 10–85%RH. The device size was intentionally kept small for its potential integration in a marketable chip. Results for the response of our fabricated sensor for dry and wet fingertips, along with determining the rate of breathing through the mouth, are part of this study, making it a potential device for health monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.