Mitochondrial homeostasis is critical for keeping functional heart in response to metabolic or environmental stresses. Mitochondrial fission and fusion (mitochondrial dynamics) play essential roles in maintaining mitochondrial homeostasis, defects in mitochondrial dynamics lead to cardiac diseases such as ischemia-reperfusion injury (IRI), heart failure and diabetic cardiomyopathy. Mitochondrial dynamics is determined by mitochondrial fission and fusion proteins, including OPA1, mitofusins and Drp1. These proteins are tightly regulated by a series of signaling pathways through different aspects such as transcription, post translation modifications (PTMs) and proteasome-dependent protein degradation. By modulating these mitochondrial fission and fusion proteins, mitochondria fine-tune their metabolic status to meet the energy demands of the heart. Moreover, these mitochondrial fission and fusion proteins are essential for mediating mitochondrial autophagy (mitophagy), leading to clearance of damaged mitochondria to maintain a healthy population of mitochondria in heart under stressed conditions. Mitochondrial dynamics dependent improvement in mitochondrial metabolism and quality could partially reverse the pathological conditions of heart. This review describes an overview of mechanisms on mitochondrial dynamics regulation and provides potential therapeutic targets for treating cardiovascular diseases.
This study uncovered a previously unrecognized profibrotic role of EphrinB2 in cardiac fibrosis, which is achieved through the interaction of Stat3 with TGF-β/Smad3 signaling, implying a promising therapeutic target in fibrotic diseases and heart failure.
Cathepsin B (CatB) is a cysteine proteolytic enzyme widely expressed in various cells and mainly located in the lysosomes. It contributes to the pathogenesis and development of many diseases. However, the role of CatB in viral myocarditis (VMC) has never been elucidated. Here we generated the VMC model by intraperitoneal injection of coxsackievirus B3 (CVB3) into mice. At day 7 and day 28, we found CatB was significantly activated in hearts from VMC mice. Compared with the wild-type mice receiving equal amount of CVB3, genetic ablation of CatB (Ctsb-/-) significantly improved survival, reduced inflammatory cell infiltration, decreased serum level of cardiac troponin I, and ameliorated cardiac dysfunction, without altering virus titers in hearts. Conversely, genetic deletion of cystatin C (Cstc-/-), which markedly enhanced CatB levels in hearts, distinctly increased the severity of VMC. Furthermore, compared with the control, we found the inflammasome was activated in the hearts of wild-type mice with VMC, which was attenuated in the hearts of Ctsb-/- mice but was further enhanced in Cstc-/- mice. Consistently, the inflammasome-initiated pyroptosis was reduced in Ctsb-/- mice hearts and further increased in Cstc-/- mice. These results suggest that CatB aggravates CVB3-induced VMC probably through activating the inflammasome and promoting pyroptosis. This finding might provide a novel strategy for VMC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.