Diabetic renal fibrosis is a common cause of end-stage renal disease, and the circRNA-miRNA-mRNA network may play an important role in the progression of diabetic nephropathy- (DN-) induced renal fibrosis. In this study, the role of circ_000166/miR-296/SGLT2 in the process of DN-related renal fibrosis was studied by constructing an animal model of DN renal fibrosis via lentiviral transfection, plasmid transfection, and dual-luciferase reporting techniques. Compared with that of normal controls, the expression of circ_000166 in the kidney tissues of DN renal fibrosis mice substantially increased. Silencing circ_000166 could minimize kidney damage and decrease urine protein levels, thereby inhibiting the progression of renal fibrosis. Moreover, circ_000166 could act as the ceRNA of miR-296 and competitively bind to miR-296, leading to an increase in the expression of the SGLT2 gene regulated by miR-296. Through mutual verification via in vivo and in vitro experiments, miR-296 was overexpressed and SGLT2 was silenced. Results showed that DN renal fibrosis and cell apoptosis were considerably reduced. We postulate that circ_000166/miR-296/SGLT2 may become a new target in the progression of DN renal fibrosis, and the regulation of this pathway may be a promising strategy for clinical treatment of DN renal fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.