We investigate the influence of vibronic coupling on a molecular dimer strongly coupled to a single cavity mode. In the framework of the Holstein-Tavis-Cummings model, the energy structure of the molecular dimer is analyzed by numerical exact diagonalization and perturbation theory. Under numerical exact diagonalization, we find that the degeneracy of lower polaritons vanishes in the presence of vibronic coupling. Under the second-order degenerate perturbation theory, the degeneracy breaking of lower polaritons can be associated with asymmetric indirect interactions mediated by the upper polaritons and the dark states. The consistency of the two approaches confirms the robustness of our simulations, indicating that the vibration-induced symmetry breaking should be experimentally observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.