There are two scenarios that proactive fast HCoP-B (FHCoP-B) cannot normally complete its operations due to fast movements during handover. We will propose efficient reactive FHCoP-B flows for these two scenarios to support fast and seamless handovers. We will further extend the analytical model proposed for mobile IPv6 to investigate performance metrics of reactive FHCoP-B with the radio link protocol, which can detect packet losses and performs retransmissions over the error-prone wireless link. Through simulations, FHCoP-B outperforms HCoP-B and the other two NEMO schemes by achieving shortest handover latencies only with few extra buffer spaces.
Purpose -In the past, by adopting the handover prediction concept of the fast mobile IPv6, the authors have proposed a cross-layer architecture, which was called the proactive fast HCoP-B (FHCoP-B), to trigger layer 3 HCoP-B route optimization flow by 802.11 and 802.16 link events before the actual layer 2 handover of a mobile subnet in the nested mobile network (NEMO) occurs. In this way, proactive FHCoP-B has shortened its handover latency and packet loss. However, there are two scenarios where proactive FHCoP-B cannot normally complete its operations due to fast movements of the NEMO during handover. The paper aims to discuss these issues. Design/methodology/approach -In this paper, the authors will propose efficient reactive FHCoP-B flows for these two scenarios to support fast and seamless handovers. The authors will further extend the analytical model proposed for mobile IPv6 to investigate four performance metrics of proactive and reactive FHCoP-B, HCoP-B and two well-known NEMO schemes with the radio link protocol (RLP), which can detect packet losses and performs retransmissions over the error-prone wireless link. Findings -Through intensive simulations, the authors conclude that FHCoP-B outperforms HCoP-B and the other two well-known NEMO schemes by achieving the shortest handover latencies, the smallest number of packet losses and the fewest playback interruption time during handover only with few extra buffer spaces, even over error-prone wireless links of the nested NEMO. Originality/value -This paper has three major contributions, which are rare in the NEMO literature. First, the proactive FHCoP-B has been enhanced as the reactive one to handle two fast handover scenarios with RLP for the nested NEMO. Second, the reactive FHCoP-B supports seamless reactive handover for the nested NEMO over error-prone wireless links. Third, mathematical performance analyses for two scenarios of reactive FHCoP-B with RLP over error-prone wireless links have been conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.