The nanoscale interactions of room temperature ionic liquids (RTILs) at uncharged (graphene) and charged (muscovite mica) solid surfaces were evaluated with high resolution X-ray interface scattering and fully atomistic molecular dynamics simulations. At uncharged graphene surfaces, the imidazolium-based RTIL ([bmim(+)][Tf(2)N(-)]) exhibits a mixed cation/anion layering with a strong interfacial densification of the first RTIL layer. The first layer density observed via experiment is larger than that predicted by simulation and the apparent discrepancy can be understood with the inclusion of, dominantly, image charge and π-stacking interactions between the RTIL and the graphene sheet. In contrast, the RTIL structure adjacent to the charged mica surface exhibits an alternating cation-anion layering extending 3.5 nm into the bulk fluid. The associated charge density profile demonstrates a pronounced charge overscreening (i.e., excess first-layer counterions with respect to the adjacent surface charge), highlighting the critical role of charge-induced nanoscale correlations of the RTIL. These observations confirm key aspects of a predicted electric double layer structure from an analytical Landau-Ginzburg-type continuum theory incorporating ion correlation effects, and provide a new baseline for understanding the fundamental nanoscale response of RTILs at charged interfaces.
.[1] The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.