Granzyme B is important for the ability of NK cells and CD8(+) T cells to kill their targets. However, we showed here that granzyme B-deficient mice clear both allogeneic and syngeneic tumor cell lines more efficiently than do wild-type (WT) mice. To determine whether regulatory T (Treg) cells utilize granzyme B to suppress immune responses against these tumors, we examined the expression and function of granzyme B in Treg cells. Granzyme B was not expressed in naive Treg cells but was highly expressed in 5%-30% of CD4(+)Foxp3(+) Treg cells in the tumor environment. Adoptive transfer of WT Treg cells, but not granzyme B- or perforin-deficient Treg cells, into granzyme B-deficient mice partially restored susceptibility to tumor growth; Treg cells derived from the tumor environment could induce NK and CD8(+) T cell death in a granzyme B- and perforin-dependent fashion. Granzyme B and perforin are therefore relevant for Treg cell-mediated suppression of tumor clearance in vivo.
Although activated murine NK cells can use the granule exocytosis pathway to kill target cells immediately upon recognition, resting murine NK cells are minimally cytotoxic for unknown reasons. Here, we showed that resting NK cells contained abundant granzyme A, but little granzyme B or perforin; in contrast, the mRNAs for all three genes were abundant. Cytokine-induced in vitro activation of NK cells resulted in potent cytotoxicity associated with a dramatic increase in granzyme B and perforin, but only minimal changes in mRNA abundance for these genes. The same pattern of regulation was found in vivo with murine cytomegalovirus infection as a physiologic model of NK cell activation. These data suggest that resting murine NK cells are minimally cytotoxic because of a block in perforin and granzyme B mRNA translation that is released by NK cell activation.
Azacitidine + venetoclax, decitabine + venetoclax, and low-dose cytarabine + venetoclax are now standard treatments for newly diagnosed older or unfit patients with acute myeloid leukemia (AML). Although these combinations are also commonly used in relapsed or refractory AML (RR-AML), clinical and molecular predictors of response and survival in RR-AML are incompletely understood. We retrospectively analyzed clinical and molecular characteristics and outcomes for 86 patients with RR-AML who were treated with venetoclax combinations. The complete remission (CR) or CR with incomplete hematologic recovery (CRi) rate was 24%, and the overall response rate was 31% with the inclusion of a morphologic leukemia-free state. Azacitidine + venetoclax resulted in higher response rates compared with low-dose cytarabine + venetoclax (49% vs 15%; P = .008). Median overall survival (OS) was 6.1 months, but it was significantly longer with azacitidine + venetoclax compared with low-dose cytarabine + venetoclax (25 vs 3.9 months; P = .003). This survival advantage of azacitidine + venetoclax over low-dose cytarabine + venetoclax persisted when patients were censored for subsequent allogeneic stem cell transplantation (8.1 vs 3.9 months; P = .035). Mutations in NPM1 were associated with higher response rates, whereas adverse cytogenetics and mutations in TP53, KRAS/NRAS, and SF3B1 were associated with worse OS. Relapse was driven by diverse mechanisms, including acquisition of novel mutations and an increase in cytogenetic complexity. Venetoclax combination therapy is effective in many patients with RR-AML, and pretreatment molecular characteristics may predict outcomes. Trials that evaluate novel agents in combination with venetoclax therapy in patients with RR-AML that have adverse risk genomic features are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.