An Al coating was deposited on the surface of pure Ti substrate by arc spray technology. In order to enable the modification reaction between the Al coating and Ti substrate, the specimen was heated to a temperature above the melting point of Al. Oxidation testing of the uncoated Ti and coated specimen was conducted at 1073 K under an air atmosphere. The microstructure, chemical composition, and phase determination of the coatings and interfaces, before and after modification treatment, were done using SEM, EDS, and XRD methods. The relationships between the modification results and time and temperature were discussed. The results showed that, after heating at 973 K for 5 hours, there was still sufficient Al on the surface of the specimen. Only intermetallic TiAl3 was formed in the diffusion region. After heating at 1073 K for 5 hours, all the Al elements diffused into the Ti substrate. Intermetallics TiAl2 and Ti3Al were also formed in the diffusion front of Al, in addition to TiAl3. After heating at 1173 K for 5 hours, a new intermetallic TiAl phase was formed at the interface of TiAl2 and Ti3Al. As the modification reaction time was prolonged at 1173 K, the formation of intermetallics TiAl2, TiAl, and Ti3Al were all increased. Among them, the formation amount of TiAl2 > Ti3Al > TiAl. The specimen after modification treatment had better high temperature oxidation resistance than the pure Ti substrate without coating.
Scanning electron microscopy (SEM) and surface replica method have been employed to study the micromechanism of fatigue crack initiation at Nd-rich phase particles in a high temperature titanium (Ti-55) alloy. It was found that the microcrack initiates near the equator of Nd-rich particles in the matrix. The microcrack grows first at an angle of about 45° with respect to the tensile axis, and then its growth direction becomes approximately normal to the tensile axis. The experimental results are analyzed in terms of the elastic stress distribution around soft particles imbedded in the matrix to account for the experimental findings of particle cracking and the associated surface microcrack initiation near the particle “equator.” A model of fatigue crack initiation at a soft surface particle is proposed.
Abstract:The NiCr-TiB 2 -ZrB 2 composite coating was deposited on the surface of blades made of steel (SUS304) using high-energy ball milling technology and air plasma spraying technology, which aimed to relieve the wear of the blades during operation. The influence of titanium diboride (TiB 2 ) and zirconium diboride (ZrB 2 ) on the microstructure and wear resistance of the coatings was investigated by X-ray diffraction, scanning electron microscopy, Vickers microhardness tester, and a wear tester. The results showed that the TiB 2 and ZrB 2 particles were unevenly distributed in the coatings and significantly increased the hardness and anti-wear, which contributed to their ultra-high hardness and extremely strong ability to resist deformation. The performance of the coatings was improved with the increase of the number of ceramic phases, while the hardness and wear resistance of the coating could reach their highest value when the TiB 2 and ZrB 2 respectively took up 15 wt.% of the total mass of the powder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.