In this paper, we used the electron beam (e-beam) evaporation to deposit Ge thin film on glass, and used microwave annealing (MWA) system of 5.8 GHz frequency for thin film crystallization. Then, we compared the MWA experiment results of sample sheet resistance (Rs), crystallization strength and cross section with those using traditional rapid thermal annealing (RTA) equipment. We found that MWA can get poly-Ge thin film with (111), (220) and (311) crystallization directions and optimal Rs at a temperature of about 450 ° C without affecting the film thickness. By comparison, RTA equipment can only reduce the sample Rs at least temperature of 550oC.
In this study we use chemical and physical vapor depositions to fabricate amorphous silicon (a-Si) films. We also use traditional rapid thermal annealing (RTA) and advanced microwave annealing (MWA) to activate or crystallize a-Si films and then observe their sheet resistances and crystallization. We discovered, although the cost of films fabricated by electron beam (e-beam) evaporation is relatively lower than by chemical vapor deposition (CVD), the effects of the former method are poorer whether in sheet resistance or film crystallization. In addition, only at the doping layer prepared by CVD can film crystallization degree produced by MWA match RTA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.