Gas ultrasonic flowmeters are widely used in natural gas measurement. In order to achieve high accuracy, it is meaningful to study interaction mechanism between flow field and acoustic field. In this study, effects of non-ideal flow on ultrasonic propagation are discussed. Firstly, a flow-acoustic coupling model is established based on COMSOL and its feasibility is verified by experiments. In order to be more in line with actual working condition, flow field is obtained by CFD simulation instead of theoretical formula calculation. Secondly, with this method, two typical non-ideal flows which often exist in real application are mainly analysed, including vortices near transducers and bend flows. The acoustic trajectory offsets, transit time, sound pressure and measurement errors are compared with results of ideal flow field. It is shown that errors will increase 10% caused by vortices near transducers, and increase 13% caused by bend flows. Besides, when passing through vortices near transducers with negative flow, trajectory offsets are opposite to flow direction. Finally, some suggestions for flowmeter design are proposed to improve measurement performance of gas ultrasonic flowmeter.
A nonporous neutral framework [CuCl(2)(m-bttmb)(2)](n) (1) was changed into a porous ionic {[Cu(m-bttmb)(2)(H(2)O)Cl]Cl(CH(3)CN)(0.5)(H(2)O)(2.75)}(n) (2) by simply increasing the amount of CH(3)CN in the mixed solvent (CH(3)CN and H(2)O) or temperature in the reactions of CuCl(2)·2H(2)O with 1,3-bis(triazol-1-ylmethyl)-2,4,6-trimethylbenzene (m-bttmb). 1 undergoes transformation into 2 when treated with CH(3)CN. Both 1 and 2 have 2D 4-connected (4,4) network architectures but in different packing arrangements. These compounds have been characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR spectra and thermogravimetric analysis. This work may provide a way to control the formation of neutral or ionic frameworks, as well as porosities by adjusting the polarity and components of the solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.