This paper investigates a drive system with energy recovery which uses a 3-phase 1-kW 36-slot 12-pole distributed winding outer-rotor surface-mounted permanent-magnet synchronous motor (SPMSM) and surface-mounted permanent-magnet synchronous generator (SPMSG), which can be used in indoor exercise bicycles. In order to extend drive system operating speed range, the constant torque control, flux-weakening control, and maximum torque/voltage control are used to extend its operation speed up to 1.75 times rated speed. In addition, a predictive speed controller and a predictive current controller are proposed to improve transient responses, load disturbance responses, and tracking responses. A digital signal processor, type TMS-320F-28035, manufactured by Texas Instruments, is used as a control center for the proposed SPMSM/SPMSG drive system. Experimental results validate the feasibility and correctness of the proposed methods.
Traditional three-phase rectifier DC-link inverters have been used in industry for more than 40 years. However, electrolytic capacitors, which are widely used in traditional inverters, have very large volumes and can only be used for five years. To solve this problem, a three-phase small-film DC-link capacitor interior permanent-magnet synchronous motor drive system is investigated in this paper. This small-film capacitor not only has a longer life and smaller size than an electrolytic capacitor, but it can also improve the input harmonic currents and power factor on the grid side. A high-order band-pass filter active damping control is proposed here. In addition, a constrained predictive speed controller is designed to enhance the transient, load disturbance, and tracking speed performance. Furthermore, a constrained predictive current controller is implemented to reduce the three-phase harmonic currents of the motor. A digital signal processor, type TMS-320F-28035, manufactured by Texas Instruments, is employed as a control center to conduct the whole control algorithms. Several simulated and measured results are compared to demonstrate the practicability and correctness of the proposed control algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.