A high open-circuit voltage inverted perovskite solar cell based on a CH3NH3PbBr3 absorber and ICBA acceptor is reported. The CH3NH3PbBr3 film fabricated under ambient atmosphere at a moderate temperature (∼100 °C) using a two-step spin-coating method is composed of aggregated nano-grains. Upon solvent annealing of the CH3NH3PbBr3/ICBA film, the efficiency of the resulting cell increases from 1.71% to 7.50% with a remarkably high open circuit voltage (Voc) of ca. 1.60 V. ICBA acts not only as a high LUMO acceptor to realize high Voc but also as a mending agent to increase the efficiency of the cell by penetrating into the defects/voids of the CH3NH3PbBr3 film via solvent annealing as evidenced by TRPL, XPS and SEM data. Solvent annealing of the active layer was proved to be simple and effective device engineering to improve the efficiency of the perovskite cell based on a low quality film and the Voc of the inverted perovskite cell can be tuned by the LUMO level of the acceptor were revealed. The CH3NH3PbBr3/ICBA film is semi-transparent with an average 50% transmittance under visible light. The moderatetemperature processed CH3NH3PbBr3 solar cell with high Voc and a semi-transparent absorber has great potential for application as the top cell in a tandem solar cell.
Nano-structured CuO-Cu2O complex thin film-based perovskite solar cells were fabricated on an indium tin oxide (ITO)-coated glass and studied. Copper (Cu) thin films with a purity of 99.995 % were deposited on an ITO-coated glass by magnetron reactive sputtering. To optimize the properties of the nano-structured CuO-Cu2O complex thin films, the deposited Cu thin films were thermally oxidized at various temperatures from 300 to 400 °C. A CH3NH3PbI3 perovskite absorber was fabricated on top of CuO-Cu2O complex thin film by a one-step spin-coating process with a toluene washing treatment. Following optimization, the maximum power conversion efficiency (PCE) exceeded 8.1 %. Therefore, the low-cost, solution-processed, stable nano-structured CuO-Cu2O complex thin film can be used as an alternative hole transport layer (HTL) in industrially produced perovskite solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.