We have used a perfusion bellows cell culture system to investigate resveratrolinduced anti-proliferation/apoptosis in a human estrogen receptor (ER)-negative breast cancer cell line (MDA-MB-231). Using an injection system to perfuse media with stilbene, we showed resveratrol (0.5 – 100 μM) to decrease cell proliferation in a concentration-dependent manner. Comparison of influx and medium efflux resveratrol concentrations revealed rapid disappearance of the stilbene, consistent with cell uptake and metabolism of the agent reported by others. Exposure of cells to 10 μM resveratrol for 4 h daily × 6 d inhibited cell proliferation by more than 60%. Variable extracellular acid-alkaline conditions (pH 6.8 – 8.6) affected basal cell proliferation rate, but did not alter anti-proliferation induced by resveratrol. Resveratrol-induced gene expression, including transcription of the most up-regulated genes and pro-apoptotic p53-dependent genes, was not affected by culture pH changes. The microarray findings in the context of induction of anti-proliferation with brief daily exposure of cells to resveratrol—and rapid disappearance of the compound in the perfusion system—are consistent with existence of an accessible initiation site for resveratrol actions on tumor cells, e.g., the cell surface receptor for resveratrol described on integrin αvβ3.
Dihydrotestosterone (DHT) has been shown to promote breast cancer growth via different mechanisms. In addition to binding to ERα, the DHT membrane receptor exists on integrin αvβ3. Resveratrol induces p53-dependent apoptosis via plasma membrane integrin αvβ3. Resveratrol and DHT signals are both transduced by activated ERK1/2; however, DHT promotes cell proliferation in cancer cells, whereas resveratrol is proapoptotic. In this study, we examined the mechanism by which DHT inhibits resveratrolinduced apoptosis in human ERα positive (MCF-7) and negative (MDA-MB-231) breast cancer cells. DHT inhibited resveratrol-stimulated phosphorylation of Ser-15 of p53 in a concentration-dependent manner. These effects of DHT on resveratrol action were blocked by an ERα antagonist, ICI 182,780, in MCF-7 breast cancer cells. DHT inhibited resveratrol-induced nuclear complex of p53-COX-2 formation which is required p53-dependent apoptosis. ChIP studies of COX-2/p53 binding to DNA and expression of p53-responsive genes indicated that DHT inhibited resveratrol-induced p53-directed transcriptional activity. In addition, DHT did inhibit resveratrol-induced COX-2/p53-dependent gene expression. These results suggest that DHT inhibits p53-dependent apoptosis in breast cancer cells by interfering with nuclear COX-2 accumulation which is essential for stimulation of apoptotic pathways. Thus, the surface receptor sites for resveratrol and DHT are discrete and activate ERK1/2-dependent downstream effects on apoptosis that are distinctive. These studies provide new insights into the antagonizing effects of resveratrol versus DHT, an important step toward better understanding and eventually treating breast cancer. It also indicates the complex pathways by which apoptosis is induced by resveratrol in DHT-depleted and -repleted environments.Oncotarget 35867 www.impactjournals.com/oncotarget
Background Human papillomavirus (HPV) infection is involved in cervical cancer development, and hence understanding its prevalence and genotype distribution is important. However, there are few reports on the prevalence and genotype distribution of HPV in the city of Huzhou in China. Methods In this retrospective cross-sectional study, 11,506 women who visited Huzhou Maternity & Child Health Care Hospital between January 2018 and October 2019 were enrolled. The results of HPV genotyping and cytology tests were analyzed. Results The overall prevalence of HPV infection was 15.5%. The rate of high-risk (HR) HPV infection (13.5%) was higher than that of single low-risk (LR) HPV infection (2.0%) (p<0.05). The five most common HPV genotypes were HPV52 (3.3%), 16 (1.9%), 58 (1.7%), 53 (1.5%), and 81 (1.2%). The infection rate of HPV peaked in women aged 16–24 and women aged ≥55. The infection rate of HPV58 or HPV81 appeared as a single peak in women aged ≥55. The rates of HR-HPV and LR-HPV infection were higher in subjects with abnormal cytology (p<0.05). Conclusions HPV infection is high in Huzhou, and HPV53 and HPV81 are the prevalent genotypes. HPV infection rate is associated with age and cytology. Regional HPV surveillance is essential to optimize current HPV prevention and vaccine development.
Gefitinib resistance has been shown to complicate cancer therapy. Lovastatin is a proteasome inhibitor that enhances gefitinib-induced antiproliferation in non-small cell lung cancer. The objective of this study is to investigate the mechanism of lovastatin-induced antiproliferation in gefitinib-resistant human cholangiocarcinoma.Two gefitinib-resistant cholangiocarcinoma cell lines, SSP-25 and HuH-28, were used in this study to determine how to compensate gefitinib resistance. The combined effect of these two drugs was examined using the MTT assay, qPCR, immunoblotting, flow cytometry, and in vivo xenograft. Results indicated that lovastatin enhanced TNF-α-induced cell death in vitro. In addition, the combination of lovastatin with gefitinib enhanced accumulation of TNF-α. Furthermore, the treatment induced a synergistic cytotoxic effect and antiproliferation through apoptosis in SSP-25 cells and cell cycle arrest in HuH-28 cells. Reproductive results were also observed in in vivo xenografts. These observations suggest that the combination of gefitinib and lovastatin might have additive antiproliferative effects against gefitinib-resistant cholangiocarcinoma cells. Based on these observations, we concluded that the combination of gefitinib and lovastatin could be used to overcome gefitinib resistance in cholangiocarcinoma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.