BackgroundDeposition and accumulation of silver nanoparticles (Ag-nps) in the liver have been shown to induce hepatotoxicity in animal studies. The hepatotoxicity may include oxidative stress, abnormalities in energy metabolism, and cell death. Studies have indicated that autophagy is an intracellular event involving balance of energy, nutrients, and turnover of subcellular organelles. The present study was undertaken to test the hypothesis that autophagy plays a role in mediating hepatotoxicity in animal after exposure to Ag-nps. Focus was placed on interrelationship between energy metabolism, autophagy, apoptosis and hepatic dysfunction.MethodsSprague Dawley rats were intraperitoneally injected with Ag-nps (10–30 nm in diameter) at concentration of 500 mg kg-1. All animals were sacrificed on days 1, 4, 7, 10 and 30 after exposure and blood and liver tissues were collected for further studies.ResultsUptake of Ag-nps was quite prompt and not proportional to the blood Ag concentration. Declination of ATP (-64% in days 1) and autophagy (determined by LC3-II protein expression and morphological evaluation) increased and peaked on the first day. The ATP content remained at low level even though the autophagy has been activated. Apoptosis (based on caspase-3 protein expression and TUNEL-positive cells staining) began to rise sigmoidally at days 1 and 4, reached a peak level at day 7, and remained at the same levels during days 7–30 post exposure. Meanwhile, autophagy exhibited a gradual decrease from days 1–10 and the decrease at day 30 was statistically significant as compared to day 0 (sham group). Inflammatory reaction (histopathological evaluation) was found at day 10 and preceded to an advanced degree at day 30 when liver function was impaired.ConclusionsThese results indicate that following Ag-nps administration, autophagy was induced; however, failure to preserve autophagy compounded with energy reduction led to apoptosis and the eventual impairment of liver function. The study provides an in-vivo evidence of hepatotoxicity by continuous exposure of Ag-nps in rats.
Sepsis develops as a result of the host response to infection, and its mortality rate in ICU remains high. Severe inflammation usually causes overproductions of proinflammatory cytokines, i.e., TNF-α and reactive oxygen species, which lead to mitochondrial damage and energetic depletion. Autophagy is a survival mechanism for eukaryote to recycle intracellular nutrients and maintain energy homeostasis. We hypothesize that autophagy plays a beneficial role in the pathogenesis of organ failure during sepsis. A rat model of cecal ligation and puncture (CLP) that simulate peritonitis-induced sepsis was used, and indicators for liver dysfunction, serum glutamic oxaloacetic, serum glutamic pyruvic, alkaline phosphatase, and bilirubin were measured. Levels of LC3-II and LC3 aggregation were quantified by Western blot analysis and by immunohistochemistry, respectively. The tissue localization of autophagy was identified by immunohistochemistry and transmission electron microscopy. Our results showed that (a) increase in LC3-II level in liver tissue occurs at 3 h, peaks at 6 h, and then surprisingly declines quickly until 18 h after CLP (CLP18h); (b) significant hepatic dysfunction was observed at CLP18h; (c) ratio of LC3 aggregation is significantly higher in hepatocytes than in Kupffer cells, and (d) loss of Atg7, an essential gene for autophagosome formation, exaggerates the TNF-α-induced cell death, depletion of ATP, and decrease of albumin production in hepatocytes. These results indicate that autophagy occurs transiently in hepatocytes at early stage, and the decline in autophagy at late stage may contribute to the functional failure in liver during polymicrobial sepsis.
Apoptosis is a process by which cells undergo a form of non-necrotic cellular suicide. Although it is a programmed process, apoptosis can be induced by various stressors. During sepsis, apoptosis has been regarded as an important cause of cell death in the immune system, leading to unresponsiveness to treatment. This study was designed to investigate how prior heat shock induction can influence the rate of apoptosis in animals that have experienced sepsis. Sprague-Dawley rats were used, and experimental sepsis was induced by cecal ligation and puncture (CLP). Animals in the heated group were anesthetized and received heat shock by whole-body hyperthermia. They were sacrificed 9 h and 18 h after CLP as early and late sepsis, respectively. Apoptosis was evaluated by "DNA ladder" detection in agarose electrophoresis and Tdt-mediated dUTP nick end-labeling (TUNEL) assay. Hsp72 was detected by Western blot analysis. The results showed that the DNA ladder was detected most clearly in the thymus at the late phase of sepsis with time course dependence, while it showed less clearly in heat shock treated animals. Histopathological study by TUNEL assay obtained similar results in the thymus, where the cortex was more susceptible to apoptosis than the medulla. The Western blot analysis showed that the heat shock induced Hsp72 concomitant with an increase in Bcl-2:Bax ratio. In conclusion, heat shock pretreatment prevents rats from sepsis-induced apoptosis that may account for the better outcome of experimental sepsis. An increase in the Bcl-2:Bax ratio may in part explain the molecular mechanism of the effect of heat shock pretreatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.