Prolonged exposure of tissues to elevated blood sugar levels lead to the formation of advanced glycation end products (AGEs), thus contributing to diabetic complications. Since the vascular system is in immediate contact with blood, diabetic effects on aorta is a major health concern. However, the relative effect of the diffusion of sugar molecular through the vascular wall and the rate of AGE formation is not known. In this study, we aim to address this issue by incubating excised porcine aorta in D-glucose, D-galactose, and D-fructose solutions for different periods. The tissue specimens were then excised for multiphoton imaging of autofluorescence intensity profiles across the aorta wall. We found that for Days 4 to 48 incubation, autofluorescence is constant along the radial direction of the aorta sections, suggesting that monosaccharide diffusion is rapid in comparison to the rate of formation of fluorescent AGEs (fAGEs). Moreover, we found that in porcine aorta, the rate of fAGE formation of D-fructose and D-glucose are factors 2.08 and 1.14 that of D-galactose. Our results suggest that for prolonged exposure of the cardiovascular system to elevated monosaccharides 4 days or longer, damage to the aorta is uniform throughout the tissues.
Acetaminophen (APAP) overdose is one of the world's leading causes of drug‐induced hepatotoxicity. Although traditional methods such as histological imaging and biochemical assays have been successfully applied to evaluate the extent of APAP‐induced liver damage, detailed effect of how APAP overdose affect the recovery of hepatobiliary metabolism and is not completely understood. In this work, we used intravital multiphoton microscopy to image and quantify hepatobiliary metabolism of the probe 6‐carboxyfluorescein diacetate in APAP‐overdose mice. We analyzed hepatobiliary metabolism for up to 7 days following the overdose and found that the excretion of the probe molecule was the most rapid on Day 1 following APAP overdose and slowed down on Days 2 and 3. On Day 7, probe excretion capability has exceeded that of the normal mice, suggesting that newly regenerated hepatocytes have higher metabolic capabilities. Our approach may be further developed applied to studying drug‐induced hepatotoxicity in vivo.
In vivo multiphoton imaging was used to map changes in hepatobiliary metabolism in liver fibrosis (left column) and hepatocellular carcinoma (right column). The top row shows the maps of kinetic rate constant of the uptake and esterase processing while the bottom row shows that of bile canalicular excretion of xenobiotics.
Further details can be found in the article by Chih‐Ju Lin, Sheng‐Lin Lee, Wei‐Hsiang Wang, et al. (https://doi.org/10.1002/jbio.201700338).
As the most abundant structural mammalian protein, collagen has been implicated in the pathogenesis of numerous diseases such as osteogenesis imperfecta, and cancer. In the case of cornea, abnormal cornea development can lead to conditions such as agenesis, megalocornea, microcornea, and cornea plana. Therefore, understanding the mechanisms of collagen assembly during development may contribute to the prevention or treatment of corneal diseases. In this study, we applied fast Fourier transform second harmonic generation microscopy to quantify parameters of corneal structures during chick development. Our results show that both the rotational pitch and overall rotational angle of corneal stroma modulate between E9 and E19. In addition, we found that corneal structures between left and right corneas are highly correlated during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.