SummaryAmino acid transport via phloem is one of the major source‐to‐sink nitrogen translocation pathways in most plant species. Amino acid permeases (AAPs) play essential roles in amino acid transport between plant cells and subsequent phloem or seed loading. In this study, a soybean AAP gene, annotated as GmAAP6a, was cloned and demonstrated to be significantly induced by nitrogen starvation. Histochemical staining of GmAAP6a:GmAAP6a‐GUS transgenic soybean revealed that GmAAP6a is predominantly expressed in phloem and xylem parenchyma cells. Growth and transport studies using toxic amino acid analogs or single amino acids as a sole nitrogen source suggest that GmAAP6a can selectively absorb and transport neutral and acidic amino acids. Overexpression of GmAAP6a in Arabidopsis and soybean resulted in elevated tolerance to nitrogen limitation. Furthermore, the source‐to‐sink transfer of amino acids in the transgenic soybean was markedly improved under low nitrogen conditions. At the vegetative stage, GmAAP6a‐overexpressing soybean showed significantly increased nitrogen export from source cotyledons and simultaneously enhanced nitrogen import into sink primary leaves. At the reproductive stage, nitrogen import into seeds was greatly enhanced under both sufficient and limited nitrogen conditions. Collectively, our results imply that overexpression of GmAAP6a enhances nitrogen stress tolerance and source‐to‐sink transport and improves seed quality in soybean. Co‐expression of GmAAP6a with genes specialized in source nitrogen recycling and seed loading may represent an interesting application potential in breeding.
Senescence is the final phase of leaf development, characterized by key processes by which resources trapped in deteriorating leaves are degraded and recycled to sustain the growth of newly formed organs. As the gaseous hormone ethylene exerts a profound effect on the progression of leaf senescence, both the optimal timing and amount of its biosynthesis are essential for controlled leaf development. The rate-limiting enzyme that controls ethylene synthesis in higher plants is ACC synthase (ACS). In this study, we evaluated the production of ethylene and revealed an up-regulation of ACS7 during leaf senescence in Arabidopsis. We further showed that the promoter activity of ACS7 was maintained at a relatively high level throughout the whole rosette development process. However, the accumulation level of ACS7 protein was extremely low in the light-grown young seedlings, and it was gradually restored as plants aging. We previously demonstrated that degradation of ACS7 is regulated by its first 14 N-terminal residues, here we compared the phenotypes of transgenic Arabidopsis overexpressing a truncated ACS7 lacking the 14 residues with transgenic plants overexpressing the full-length protein. Results showed that seedlings overexpressing the truncated ACS7 exhibited a senescence phenotype much earlier than their counterparts overexpressing the full-length gene. Fusion of the 14 residues to SSPP, a PP2C-type senescence-suppressed protein phosphatase, effectively rescued the SSPP-induced suppression of rosette growth and development but had no effect on the delayed senescence. This observation further supported that N-terminus-mediated degradation of ACS7 is negatively regulated by leaf senescence signaling. All results of this study therefore suggest that ACS7 is one of the major contributors to the synthesis of ‘senescence ethylene’. And more importantly, the N-terminal 14 residue-mediated degradation of this protein is highly regulated by senescence signaling to enable plants to produce the appropriate levels of ethylene required.
There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.