Biharmonic maps between surfaces are studied in this paper. We compute the bitension field of a map between surfaces with conformal metrics in complex coordinates. As applications, we show that a linear map from Euclidean plane into (R 2 , σ 2 dwdw) is always biharmonic if the conformal factor σ is bianalytic; we construct a family of such σ, and we give a classification of linear biharmonic maps between 2-spheres. We also study biharmonic maps between surfaces with warped product metrics. This includes a classification of linear biharmonic maps between hyperbolic planes and some constructions of many proper biharmonic maps into a circular cone or a helicoid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.