The photodissociation of gaseous molecular nitrogen has been investigated intensively, but the corresponding knowledge in a solid phase is lacking. Irradiation of pure solid nitrogen at 3 K with vacuum-ultraviolet light from a synchrotron produced infrared absorption lines of product l-N3 at 1657.8 and 1652.6 cm(-1). The threshold wavelength to generate l-N3 was determined to be (143.7±1.8) nm, corresponding to an energy of (8.63±0.11) eV. Quantum-chemical calculations support the formation of l-N3 from the reaction N2 +N2, possibly through an activated complex l-N4 upon photoexcitation with energy above 8.63 eV. The results provide a possible application to an understanding of the nitrogen cycle in astronomical environments.
Samples of pure methane and of methane dispersed in solid neon at 3 K subjected to irradiation at wavelengths less than 165 nm with light from a synchrotron yielded varied products that were identified through their infrared absorption spectra, including CH3, C2H2, C2H3, C2H4, C2H6, C4H2, C4H4, C5H2, C8H2, CnH with n = 1-5, and carbon chains Cn with n = 3-20. The efficiency of photolysis of methane and the nature of the photoproducts depended on the concentration of methane and the wavelength selected for irradiation; an addition of H2 into solid neon enhanced the formation of long carbon chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.