Chiral metal-organic framework coated open tubular columns are used in the high-resolution gas chromatographic separation of chiral compounds. The columns have excellent selectivity and also possess good recognition ability toward a wide range of organic compounds such as alkanes, alcohols, and isomers.
Porous organic molecular cages as a new type of porous materials have attracted a tremendous attention for their potential applications in recent years. Here we report the use of a homochiral porous organic cage (POC) (CC3-R) diluted with a polysiloxane (OV-1701) as a stationary phase for high-resolution gas chromatography (GC) with excellent enantioselectivity. A large number of optical isomers have been resolved without derivatization, including chiral alcohols, diols, amines, alcohol amines, esters, ketones, ethers, halohydrocarbons, organic acids, amino acid methyl esters, and sulfoxides. Compared with commercial β-DEX 120 and Chirasil-L-Val columns, the CC3-R coated capillary column offered more preeminent enantioselectivity. In addition, CC3-R also exhibits good selectivity for the separation of isomers, linear alkanes, alcohols, and aromatic hydrocarbons. The excellent resolution ability, repeatability, and thermal stability make CC3-R a promising candidate as a novel stationary phase for GC. The study described herein first proves useful commercially. This work also indicates that porous organic molecular materials will become more attractive in separation science.
Chromatography techniques based on chiral stationary phases are widely used for the separation of enantiomers. In particular, gas chromatography has developed rapidly in recent years due to its merits such as fast analysis speed, lower consumption of stationary phases and analytes, higher column efficiency, making it a better choice for chiral separation in diverse industries. This article summarizes recent progress of novel chiral stationary phases based on cyclofructan derivatives and chiral porous materials including chiral metal-organic frameworks, chiral porous organic frameworks, chiral inorganic mesoporous materials, and chiral porous organic cages in gas chromatography, covering original research papers published since 2010. The chiral recognition properties and mechanisms of separation toward enantiomers are also introduced.
Chiral nematic mesoporous silica (CNMS) has attracted widespread attention due to some unique features, such as its nematic structure, chirality, large pore size, high temperature resistance, low cost, and ease of preparation. We first reported the use of CNMS as a stationary phase for capillary gas chromatography (GC). The CNMS-coated capillary column not only gives good selectivity for the separation of linear alkanes, aromatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and isomers but also offers excellent enantioselectivity for chiral compounds. Compared with enantioseparations on commercial β-DEX 120 and Chirasil-l-Val columns, a CNMS-coated capillary column offers excellent enantioselectivity, chiral recognition complementarity, and the separation of analytes within short elution times. It can also be potentially applied in high-temperature GC at more than 350 °C. This work indicates that CNMS could soon become very attractive for separations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.