In this paper, a generalized (2+1)-dimensional Hirota–Satsuma–Ito (GHSI) equation is investigated using Lie symmetry approach. Infinitesimal generators and symmetry groups of this equation are presented, and the optimal system is given with adjoint representation. Based on the optimal system, some symmetry reductions are performed and some similarity solutions are provided, including soliton solutions and periodic solutions. With Lagrangian, it is shown that the GHSI equation is nonlinearly self-adjoint. By means of the Lie point symmetries and nonlinear self-adjointness, the conservation laws are constructed. Furthermore, some physically meaningful solutions are illustrated graphically with suitable choices of parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.