For biological synapses, high sensitivity is crucial for transmitting information quickly and accurately. Compared to biological synapses, memristive ones show a much lower sensitivity to electrical stimuli since much higher voltages are needed to induce synaptic plasticity. Yet, little attention has been paid to enhancing the sensitivity of synaptic devices. Here, electrochemical metallization memory cells based on lightly oxidized ZnS films are found to show highly controllable memristive switching with an ultralow SET voltage of several millivolts, which likely originates from a two-layer structure of ZnS films, i.e., the lightly oxidized and unoxidized layers, where the filament rupture/rejuvenation is confined to the two-layer interface region several nanometers in thickness due to different ion transport rates in these two layers. Based on such devices, an ultrasensitive memristive synapse is realized where the synaptic functions of both short-term plasticity and long-term potentiation are emulated by applying electrical stimuli several millivolts in amplitude, whose sensitivity greatly surpasses that of biological synapses. The dynamic processes of memorizing and forgetting are mimicked through a 5 × 5 memristive synapse array. In addition, the ultralow operating voltage provides another effective solution to the relatively high energy consumption of synaptic devices besides reducing the operating current and pulse width.
Stability has become the main obstacle for the commercialization of perovskite solar cells (PSCs) despite the impressive power conversion efficiency (PCE). Poor crystallization and ion migration of perovskite are the major origins of its degradation under working condition. Here, high‐performance PSCs incorporated with pyridine‐2‐carboxylic lead salt (PbPyA2) are fabricated. The pyridine and carboxyl groups on PbPyA2 can not only control crystallization but also passivate grain boundaries (GBs), which result in the high‐quality perovskite film with larger grains and fewer defects. In addition, the strong interaction among the hydrophobic PbPyA2 molecules and perovskite GBs acts as barriers to ion migration and component volatilization when exposed to external stresses. Consequently, superior optoelectronic perovskite films with improved thermal and moisture stability are obtained. The resulting device shows a champion efficiency of 19.96% with negligible hysteresis. Furthermore, thermal (90 °C) and moisture (RH 40–60%) stability are improved threefold, maintaining 80% of initial efficiency after aging for 480 h. More importantly, the doped device exhibits extraordinary improvement of operational stability and remains 93% of initial efficiency under maximum power point (MPP) tracking for 540 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.