A negative regulatory element (NRE) is located immediately upstream of the upstream regulatory sequence of core promoter and second enhancer of human hepatitis B virus (HBV). NRE represses the transcription activation function of the upstream regulatory sequence of core promoter and the second enhancer. In this study, we described the cloning and characterization of an NRE-binding protein (NREBP) through expression cloning. NREBP cDNA is 8266 nucleotides in size and encodes a protein of 2386 amino acids with a predicted molecular mass of 262 kDa. Three previously described cDNAs, DBP-5, SONB, and SONA, are partial sequence and/or alternatively spliced forms of NREBP. The genomic locus of the NREBP/SON gene is composed of 13 exons and 12 introns. The endogenous NREBP protein is localized in the nucleus of human hepatoma HuH-7 cells. Antibody against NREBP protein can specifically block the NRE binding activity present in fractionated nuclear extracts in gel shifting assays, indicating that NREBP is the endogenous nuclear protein that binds to NRE sequence. By polymerase chain reaction-assisted binding site selection assay, we determined that the consensus sequence for NREBP binding is GA(G/T)AN(C/ G)(A/G)CC. Overexpression of NREBP enhances the repression of the HBV core promoter activity via NRE. Overexpression of NREBP can also repress the transcription of HBV genes and the production of HBV virions in a transient transfection system that mimics the viral infection in vivo. Infection of hepatitis B virus (HBV)1 causes acute and chronic hepatitis and is closely associated with the development of cirrhosis and hepatocellular carcinoma. HBV is a small enveloped DNA virus with a partially double-stranded 3.2-kb genome. The genome contains four partially overlapping open reading frames (ORFs) coding for the surface, core, polymerase, and X proteins. The transcription of these open reading frames is under the control of four promoters (two surface promoters, one core promoter, and one X promoter) and two enhancers (enhancer I and enhancer II). Core promoter produces two 3.5-kb RNAs: the precore and pregenomic RNAs. Precore RNA encodes precore protein and e antigen. Pregenomic RNA not only serves as the mRNA that encodes core and polymerase proteins but also can be packaged into nucleocapsids along with viral polymerase, serving as the template for reverse transcription. Regulated expression of pregenomic RNA plays a pivotal role in the control of the viral replication cycle. The core promoter can be divided into two elements: the basal core promoter (BCP) and the core upstream regulatory sequence (CURS). CURS can activate the adjacent downstream BCP activity in cis. Interestingly, the CURS is also colocalized with the second enhancer (ENII) in the HBV genome (1). The ENII can activate the surface and X promoters in a position-and orientation-independent manner (2). The CURS/ENII displays a differentiated liver cell specificity (3), which is the combined effect of several liver-enriched transcription factors, such as ...
Balance among the complex interactions of the gut microbial community is important for intestinal health. Probiotic bacteria can improve bacterial balance and have been used to treat gastrointestinal diseases. Neonatal necrotizing enterocolitis (NEC) is a life-threatening inflammatory bowel disorder primarily affecting premature infants. NEC is associated with extensive inflammatory NF-κB signaling activation as well as intestinal barrier disruption. Clinical studies have shown that probiotic administration may protect against NEC, however there are safety concerns associated with the ingestion of large bacterial loads in preterm infants. Bacteria-free conditioned media (CM) from certain probiotic organisms have been shown to retain bioactivity including anti-inflammatory and cytoprotective properties without the risks of live organisms. We hypothesized that the CM from Lactobacillus acidophilus (La), Bifidobacterium infantis (Bi), and Lactobacillus plantarum (Lp), used separately or together would protect against NEC. A rodent model with intestinal injury similar to NEC was used to study the effect of CM from Lp, La/Bi, and La/Bi/Lp on the pathophysiology of NEC. All the CM suppressed NF-κB activation via preserved IκBα expression and this protected IκBα was associated with decreased liver activity of the proteasome, which is the degrading machinery for IκBα. These CM effects also caused decreases in intestinal production of the pro-inflammatory cytokine TNF-α, a downstream target of the NF-κB pathway. Combined La/Bi and La/Bi/Lp CM in addition protected intestinal barrier function by maintaining tight junction protein ZO-1 levels and localization at the tight junction. Double combined La/Bi CM significantly reduced intestinal injury incidence from 43% to 28% and triple combined La/Bi/Lp CM further reduced intestinal injury incidence to 20%. Thus, this study demonstrates different protective mechanisms and synergistic bioactivity of the CM from different organisms in ameliorating NEC-like intestinal injury in an animal model.
Neonatal necrotizing enterocolitis (NEC) is a poorly understood life-threatening illness afflicting premature infants. Research is hampered by the absence of a suitable method to monitor disease progression noninvasively. The primary goal of this research was to test in vivo MRI methods for the noninvasive early detection and staging of inflammation in the ileum of an infant rat model of NEC. Neonatal rats were delivered by cesarean section at embryonic stage of day 20 after the beginning of pregnancy and stressed with formula feeding, hypoxia and bacterial colonization to induce NEC. Naturally born and dam-fed neonatal rats were used as healthy controls. In vivo MRI studies were performed using a Bruker 9.4-T scanner to obtain high-resolution anatomical MR images using both gradient echo and spin echo sequences, pixel-by-pixel T2 maps using a multi-slice–multi-echo sequence, and maps of the apparent diffusion coefficient (ADC) of water using a spin echo sequence, to assess the degree of ileal damage. Pups were sacrificed at the end of the MRI experiment on day 2 or 4 for histology. T2 measured by MRI was increased significantly in the ileal regions of pups with NEC by histology (106.3 ± 6.1 ms) compared with experimentally stressed pups without NEC (85.2 ± 6.8 ms) and nonstressed, control rat pups (64.9 ± 2.3 ms). ADC values measured by diffusion-weighted MRI were also increased in the ileal regions of pups with NEC by histology [(1.98 ± 0.15) × 10–3 mm2/s] compared with experimentally stressed pups without NEC [(1.43 ± 0.16) × 10–3 mm2/s] and nonstressed control pups [(1.10 ± 0.06) × 10–3 mm2/s]. Both T2 and ADC values between these groups were found to be significantly different (p < 0.03). The correlation of MRI results with histologic images of the excised ileal tissue samples strongly suggests that MRI can noninvasively identify NEC and assess intestinal injury prior to clinical symptoms in a physiologic rat pup model of NEC. © 2013 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.