Multimedia or spoken content presents more attractive information than plain text content, but it's more difficult to display on a screen and be selected by a user. As a result, accessing large collections of the former is much more difficult and time-consuming than the latter for humans. It's highly attractive to develop a machine which can automatically understand spoken content and summarize the key information for humans to browse over. In this endeavor, we propose a new task of machine comprehension of spoken content. We define the initial goal as the listening comprehension test of TOEFL, a challenging academic English examination for English learners whose native language is not English. We further propose an Attention-based Multi-hop Recurrent Neural Network (AM-RNN) architecture for this task, achieving encouraging results in the initial tests. Initial results also have shown that word-level attention is probably more robust than sentence-level attention for this task with ASR errors.
Recurrent neural network architectures combining with attention mechanism, or neural attention model, have shown promising performance recently for the tasks including speech recognition, image caption generation, visual question answering and machine translation. In this paper, neural attention model is applied on two sequence labeling tasks, dialogue act detection and key term extraction. In the sequence labeling tasks, the model input is a sequence, and the output is the label of the input sequence. The major difficulty of sequence labeling is that when the input sequence is long, it can include many noisy or irrelevant part. If the information in the whole sequence is treated equally, the noisy or irrelevant part may degrade the classification performance. The attention mechanism is helpful for sequence classification task because it is capable of highlighting important part among the entire sequence for the classification task. The experimental results show that with the attention mechanism, discernible improvements were achieved in the sequence labeling task considered here. The roles of the attention mechanism in the tasks are further analyzed and visualized in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.