A bioinspired, reusable, paper-based gold-nanoparticle film is fabricated by depositing an as-prepared gold-nanoparticle thin film on airlaid paper. This paper-based system with enhanced surface roughness and low thermal conductivity exhibits increased efficiency of evaporation, scale-up potential, and proven reusability. It is also demonstrated to be potentially useful in seawater desalination.
Chiral fluorescent materials with fluorescent nanoparticles assembled into a chiral structure represent a grand challenge. Here, we report self-assembled emissive needle-like nanostructures through decorating cellulose nanocrystals (CNCs) with carbon quantum dots (CQDs). This assembly is facilitated by the heterogeneous amphiphilic interactions between natural and synthetic components. These emissive nanostructures can self-organize into chiral nematic solid-state materials with enhanced mechanical performance. The chiral CQD/CNC films demonstrate an intense iridescent appearance superimposed with enhanced luminescence that is significantly higher than that for CQD films and other reported CQD/CNC films. A characteristic fluorescent fingerprint signature is observed in the CQD/CNC film, proving the well-defined chiral organization of fluorescent nanostructures. The chiral organization of CQDs enables the solid CQD/CNC film to form a right-hand chiral fluorescence with an asymmetric factor of −0.2. Additionally, we developed chemical 2D printing and soft lithography patterning techniques to fabricate the freestanding chiral fluorescent patterns that combines mechanical intergrity and chiral nematic structure with light diffraction and emission.
ganic CsPbX 3 QDs possess narrow full width at half maximum (FWHM) of emission (as small as 12 nm) and excellent quantum yield (QY: 50-90%). [1,8] They have a Bohr diameter up to 12 nm, [1] exhibiting a size-tunable bandgap in the visible region. It is also notable that the exchange of halide ions (Cl − , Br − , and I − ) in as-synthesized perovskite QDs is highly effective, rendering easy and rapid access to a wide range of perovskite QDs with tunable absorption and photoluminescence (PL) spectra. [1] In spite of significant advances in perovskite research noted above, a key to the success of perovskite-based materials and devices is the stability of perovskites as they are susceptible to decomposition due to their ionic crystal nature. [7,9] Recently, several methods including coating with alumina by atomic layer deposition, [10] partial coating with SiO 2 via sol-gel process, [11] physical mixing with hydrophobic polymers, [12] and encapsulation within mesoporous silica [7] or polymer beads [13] have proven to be effective in improving stability in polar and ambient environments. However, nearly all approaches described above for stability enhancement result in nanocomposites with multiple perovskite QDs encapsulated in microscopic protective matrices. These microscale nanocomposites may be disadvantageous for biomedical applications where cellular uptake is more feasible for smaller nanoscopic particles, [14] or LEDs where the processing of nanoscopic luminescent particles often leads to low scattering loss, higher loading and packing density, and thus film uniformity. [11] Clearly, the ability to deliberately and reliably improve the stability of perovskite QDs (e.g., against humidity and polar solvents) while retaining their individual nanometer size represents a critical step that underpins future advances in optoelectronic and biological applications.Herein, we report a general and robust strategy by capitalizing on judiciously designed amphiphilic star-like diblock copolymers with well-controlled molecular weight and low polydispersity of each block as molecularly engineered nanoreactors to craft uniform perovskite QDs. Remarkably, these QDs simultaneously possess precisely tunable dimensions Instability of perovskite quantum dots (QDs) toward humidity remains one of the major obstacles for their long-term use in optoelectronic devices. Herein, a general amphiphilic star-like block copolymer nanoreactor strategy for in situ crafting a set of hairy perovskite QDs with precisely tunable size and exceptionally high water and colloidal stabilities is presented. The selective partition of precursors within the compartment occupied by inner hydrophilic blocks of star-like diblock copolymers imparts in situ formation of robust hairy perovskite QDs permanently ligated by outer hydrophobic blocks via coprecipitation in nonpolar solvent. These size-and compositiontunable perovskite QDs reveal impressive water and colloidal stabilities as the surface of QDs is intimately and permanently ligated by a layer of outer ...
We report a novel orthogonal lithography fabrication of patterned inorganic perovskite CsPbX 3 (X= Cl, Br, I) quantum dot (QD) arrays which cannot be patterned with traditional approaches. This approach involves a combination of fluorinated polymer and solvent to resolve issues of polar-non-polar solvent constraints thus enabling the fabrication of complex patterns with high optical gain and bright and multicolor emission. We utilized this approach to fabricate high-resolution large-area arrays of microdisk lasers and milticolor (binary-and ternary-emission) pixels. The optical cavity modes of CsPbBr 3 QD microdisk lasers were readily controlled by tuning the disk size, where the mode spacing decreases while the number of modes increases with increasing disk diameter. Finally, we demonstrated the versatility of our approach for the integration of environmentally-sensitive QDs with different emission signatures and composition on the same chip, while achieving high density, highresolution large-area QD arrays with multicolor pixels.
This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.