We have fabricated the complicated two-dimensional subwave-length microstructures induced by the femtosecond vector light fields on silicon. The fabricated microstructures have the interval between two ripples in microstructures to be around 670-690 nm and the depth of the grooves to be about 300 nm when the pulse fluence of 0.26 J/cm2 is slightly higher than the ablated threshold of 0.2 J/cm2 for silicon under the irradiation of 100 pulses. The ripples are always perpendicular to the direction of the locally linear polarization. The designable spatial structure of polarization of the femtosecond vector light field can be used to manipulate the fabricated microstructure.
We present and demonstrate an approach for femtosecond laser processing by using patterned vector optical fields (PVOFs) composed of multiple individual vector optical fields. The PVOFs can be flexibly engineered due to the diversity of individual vector optical fields in spatial arrangement and distribution of states of polarization, and it is easily created with the aid of a spatial light modulator. The focused PVOFs will certainly result in various interference patterns, which are then used to fabricate multi-microholes with various patterns on silicon. The present approach can be expanded to fabricate three-dimensional microstructures based on two-photon polymerization.
Ca4YO(BO3)3 (YCOB) crystals have been grown using the vertical Bridgman method. The thermal properties of YCOB were measured for the first time to our knowledge. The specific heat is 729.7 J/kg K at 373K. The average thermal expansion coefficients along the a, b and c axes are 9.9 × 10‐6 /K, 8.2 × 10‐6 /K and 12.8 × 10‐6 /K, respectively, in the temperature range of 293‐1173 K. The thermal conductivities along the a, b and c axes are 1.83 W/mK, 1.72 W/mK and 2.17 W/mK at 373 K. The anisotropy in the measured thermal conductivities of YCOB is consistent with the experimental results of the thermal expansion. The SHG of a Nd: YAG laser was compared with that of a KDP crystal. The effective nonlinear coefficients (deff) of YCOB in type I phase matching directions of (θ, ϕ) = (66.3°, 143.5°) and (65.9°, 36.5°) were estimated to be 1.45 pm/V and 0.91 pm/V, respectively. The bulk damage threshold was observed as 85 GW/cm2 for single pulse of a Nd:YAG laser with 10 ns pulseduration.
We present a generalized Poincaré sphere (G sphere) and generalized Stokes parameters (G parameters), as a geometric representation, which unifies the descriptors of a variety of vector fields. Unlike the standard Poincaré sphere, the radial dimension in the G sphere is not used to describe the partially polarized field. The G sphere is constructed by extending the basic Jones vector bases to the general vector bases with the continuously changeable ellipticity (spin angular momentum, SAM) and the higher dimensional orbital angular momentum (OAM). The north and south poles of different spherical shells in the G sphere represent the pair of different orthogonal vector basis with different ellipticity (SAM) and the opposite OAM. The higher-order Poincaré spheres are just the two special spherical shells of the G sphere. We present a quite flexible scheme, which can generate all the vector fields described in the G sphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.