Aiming at the soft contact problem of space docking, a bionic docking mechanism for space target acquisition is proposed to realize the buffering and unloading of six–dimensional spatial collision through flexible rotating and linear components. Using the Kane method, an integrated dynamic equation of the bionic docking mechanism in space docking is established, and the stiffness optimization strategy is carried out based on angular momentum conservation. Based on the particle swarm optimization (PSO), a stiffness optimization scheme was realized. Through the numerical simulation of the bionic docking mechanism in space docking, the stiffness optimization was achieved and the soft contact machine process is verified. Finally, through the docking collision experiments in Adams, the results indicate that the proposed bionic docking mechanism can not only prolong the collision time to win time for space acquisition, but also buffer and unload the six–dimensional spatial collision caused by space target docking.
The space-borne manipulator has been playing an important part in docking tasks. Docking collision can easily lead to instability of both the manipulator and floating base. Aiming at the problem of soft capture, a novel soft-contact joint with dual working modes is developed, especially to buffer and unload the spatial collision momentum. Furthermore, considering a series-wound soft-capture manipulator with multi-joints, a generalized modeling method was established by using the Kane approach. Both the benefits of soft-contact joint and the effectiveness of dynamics equations are verified in MATLAB and Adams software by simulations of a two-joint manipulator with eight-DOF. The comparative simulation results showed the advantages of the proposed soft-contact joint in reducing instability from spatial impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.