Background subtraction is a mainstream algorithm for moving object detection in video surveillance systems. It segments moving objects by using the difference between the background and input images. The key to background subtraction is to establish a reliable initial background. In this study, we propose a background subtraction algorithm based on category entropy analysis that dynamically creates color categories for each pixel in the images. The algorithm uses the concept of a joint category to build background categories that can adapt to the color disturbance of the background. Furthermore, in order to overcome dynamic background environments, this paper proposes the concept of color category entropy to estimate the number of necessary background categories and establish sufficient and representative background categories to adapt to dynamic background environments. In addition, recent mainstream methods for background subtraction were implemented and analyzed in comparison with our algorithm.
The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft’s nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft’s nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.