Potassium ion (K+) homeostasis and dynamics play critical roles in biological activities. Here we describe three genetically encoded K+ indicators. KIRIN1 (potassium (K) ion ratiometric indicator) and KIRIN1-GR are Förster resonance energy transfer (FRET)-based indicators with a bacterial K+ binding protein (Kbp) inserting between the fluorescent protein FRET pairs mCerulean3/cp173Venus and Clover/mRuby2, respectively. GINKO1 (green indicator of K+ for optical imaging) is a single fluorescent protein-based K+ indicator constructed by insertion of Kbp into enhanced green fluorescent protein (EGFP). These indicators are suitable for detecting K+ at physiologically relevant concentrations in vitro and in cells. KIRIN1 enabled imaging of cytosolic K+ depletion in live cells and K+ efflux and reuptake in cultured neurons. GINKO1, in conjunction with red fluorescent Ca2+ indicator, enable dual-color imaging of K+ and Ca2+ dynamics in neurons and glial cells. These results demonstrate that KIRIN1 and GINKO1 are useful tools for imaging intracellular K+ dynamics.
Potassium ion (K+) plays a critical role as an essential electrolyte in all biological systems. Genetically encoded fluorescent K+ biosensors are promising tools to further improve our understanding of K+-dependent processes under normal and pathological conditions. Here, we report the crystal structure of a previously reported genetically encoded fluorescent K+ biosensor, GINKO1, in the K+-bound state. Using structure-guided optimization and directed evolution, we have engineered an improved K+ biosensor, designated GINKO2, with higher sensitivity and specificity. We have demonstrated the utility of GINKO2 for in vivo detection and imaging of K+ dynamics in multiple model organisms, including bacteria, plants, and mice.
Anthozoa-class red fluorescent proteins (RFPs) are frequently used as biological markers, with far-red (λem ∼ 600–700 nm) emitting variants sought for whole-animal imaging because biological tissues are more permeable to light in this range. A barrier to the use of naturally occurring RFP variants as molecular markers is that all are tetrameric, which is not ideal for cell biological applications. Efforts to engineer monomeric RFPs have typically produced dimmer and blue-shifted variants because the chromophore is sensitive to small structural perturbations. In fact, despite much effort, only four native RFPs have been successfully monomerized, leaving the majority of RFP biodiversity untapped in biomarker development. Here we report the generation of monomeric variants of HcRed and mCardinal, both far-red dimers, and describe a comprehensive methodology for the monomerization of red-shifted oligomeric RFPs. Among the resultant variants is mKelly1 (emission maximum, λem = 656 nm), which, along with the recently reported mGarnet2 [Matela G, et al. (2017) Chem Commun (Camb) 53:979–982], forms a class of bright, monomeric, far-red FPs.
Background:The role of the pyranopterin component of the mononuclear molybdenum cofactor is largely unknown. Results: Variants of pyranopterin-coordinating amino acid residues were generated, and their effects on electrochemistry/ catalysis investigated.
Conclusion:The pyranopterin environment modulates molybdenum electrochemistry. Significance: The pyranopterin coordination environment enables redox-tuning of the molybdenum atom, and facilitates molybdoenzyme reactivity toward a broad range of substrates.
Monatomic ions play critical biological roles including maintaining the cellular osmotic pressure, transmitting signals, and catalyzing redox reactions as cofactors in enzymes. The ability to visualize monatomic ion concentration, and dynamic changes in the concentration, is essential to understanding their many biological functions. A growing number of genetically encodable and synthetic indicators enable the visualization and detection of monatomic ions in biological systems. With this review, we aim to provide a survey of the current landscape of reported indicators. We hope this review will be a useful guide to researchers who are interested in using indicators for biological applications and to tool developers seeking opportunities to create new and improved indicators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.