We report the Aharonov-Bohm (AB) oscillation in the BiSbTe3 topological insulator macroflake. The magnetoresistance reveals periodic oscillations. The oscillation index number reveals the Berry phase is π which supports the oscillation originates from the surface state. The AB oscillation frequency increases as temperature decreases, and the corresponding phase coherence length is consistent with that extracted from the weak antilocalization. The phase coherence length is proportional to T−1∕2. The magnetoresistance ratio reaches 700% (1000%) at 9 T (14 T) and 2 K, and it is proportional to the carrier mobility. The magnetoresistance ratio is larger than all reported values in (Bi, Sb)2(Te, Se)3 topological insulators.
We demonstrate quantum oscillations in $$\hbox {BiSbTe}_{{3}}$$
BiSbTe
3
topological insulator macroflakes in different probe configurations. The oscillation period in the local configuration is twice compared to the non-local configuration. The Aharonov–Bohm-like (AB-like) oscillation dominates the transport property in the local configuration and the Altshuler–Aronov–Spivak-like (AAS-like) oscillation dominates the transport property in the non-local configuration. The AB-like oscillation period is 0.21 T and the related loop diameter is 156 nm which is consistent with the reported phase coherence length in topological insulators. The Shubnikov–de Haas oscillation frequency is the same but oscillation peaks reveal a $$\pi$$
π
phase shift in the local and non-local configuration. The Berry phase is $$\pi$$
π
in the local configuration and 0 in non-local configuration.
We study the quantum oscillations in the BiSbTe 3 topological insulator. In addition to the Shubnikov-de Haas (SdH) oscillation, the Aharonov-Bohm-like (ABL) oscillations are also observed. The ABL oscillation period is constant at each Landau level (LL) which is determined from the SdH oscillation. The shorter ABL oscillation periods are observed at lower LLs. The oscillation period is proportional to the square root of the LL at temperatures. The ratio of the ABL oscillation period to the effective mass is weak LL dependence. The LL-dependent ABL oscillation might originate from the LL-dependent effective mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.