SUMMARYSecondary cell-wall thickening takes place in sclerenchyma cells, but not in surrounding parenchyma cells. The molecular mechanism of switching on and off secondary wall synthesis in various cell types is still elusive. Here, we report the identification of a dominant mutant stp-2d showing secondary wall thickening in pith cells (STP). Immunohistochemistry assays confirmed accumulation of secondary cell walls in the pith cells of the stp-2d mutant. Activation of microRNA 165b (miR165b) expression is responsible for the STP phenotype, as demonstrated by transgenic over-expression experiments. The expression of three class III HD-ZIP transcription factor genes, including AtHB15, was repressed in the stp-2d mutant. Transgenic overexpression of a mutant form of AtHB15 that is resistant to miR165-mediated cleavage reversed the stp-2d mutant phenotype to wild-type, indicating that AtHB15 represses secondary wall development in pith. Characterization of two athb15 mutant alleles further confirmed that functional AtHB15 is necessary for retaining primary walls in parenchyma pith cells. Expression analyses of cell-wall synthetic genes and wall-related transcription factors indicated that a transcriptional pathway is involved in AtHB15 function. These results provide insight into the molecular mechanism of secondary cell-wall development.
Leaf senescence is not only genetically programmed but also induced by exogenous stress to ensure completion of the plant life cycle, successful reproduction and environmental adaptability. Genetic reprogramming is a major aspect of leaf senescence, and the senescence signaling that follows is controlled by a complex regulatory network. Recent studies suggest that the activity of transcription factors together with epigenetic mechanisms ensures the robustness of this network, with the latter including chromatin remodeling, DNA modification, and RNA-mediated control of transcription factors and other senescence-associated genes. In this review, we provide an overview of the relevant epigenetic mechanisms and summarize recent findings of epigenetic regulators of plant leaf senescence involved in DNA methylation and histone modification along with the functions of small RNAs in this process.
Flowering is the transition from vegetative growth to reproductive growth and depends on internal signals and external cues (Bäurle and Dean, 2006; Andrés and Coupland, 2012). Plants evolved distinct photoperiodic responses to adapt to their local environments. For long-day (LD) plants, prolonged daytime induces flowering, while short-day (SD) plants flower earlier under SD conditions. The ability of plants to respond to photoperiod requires the detection of daylength. In the LD plant Arabidopsis (Arabidopsis thaliana), CON-STANS (CO) is a major regulator of photoperiodic flowering (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.