To solve the problem of one-sided pursuit of the shortest distance but ignoring the tourist experience in the process of tourism route planning, an improved ant colony optimization algorithm is proposed for tourism route planning. Contextual information of scenic spots significantly effect people’s choice of tourism destination, so the pheromone update strategy is combined with the contextual information such as weather and comfort degree of the scenic spot in the process of searching the global optimal route, so that the pheromone update tends to the path suitable for tourists. At the same time, in order to avoid falling into local optimization, the sub-path support degree is introduced. The experimental results show that the optimized tourism route has greatly improved the tourist experience, the route distance is shortened by 20.5% and the convergence speed is increased by 21.2% compared with the basic algorithm, which proves that the improved algorithm is notably effective.
There are a large number of symptom consultation texts in medical and healthcare Internet communities, and Chinese health segmentation is more complex, which leads to the low accuracy of the existing algorithms for medical text classification. The deep learning model has advantages in extracting abstract features of text effectively. However, for a large number of samples of complex text data, especially for words with ambiguous meanings in the field of Chinese medical diagnosis, the word-level neural network model is insufficient. Therefore, in order to solve the triage and precise treatment of patients, we present an improved Double Channel (DC) mechanism as a significant enhancement to Long Short-Term Memory (LSTM). In this DC mechanism, two channels are used to receive word-level and char-level embedding, respectively, at the same time. Hybrid attention is proposed to combine the current time output with the current time unit state and then using attention to calculate the weight. By calculating the probability distribution of each timestep input data weight, the weight score is obtained, and then weighted summation is performed. At last, the data input by each timestep is subjected to trade-off learning to improve the generalization ability of the model learning. Moreover, we conduct an extensive performance evaluation on two different datasets: cMedQA and Sentiment140. The experimental results show that the DC-LSTM model proposed in this paper has significantly superior accuracy and ROC compared with the basic CNN-LSTM model.
The original Hyperspectral image (HSI) has different degrees of Hughes phenomenon and mixed noise, leading to the decline of classification accuracy. To make full use of the spatial-spectral joint information of HSI and improve the classification accuracy, a novel dual feature extraction framework joint transform domain-spatial domain filtering based on multi-scale-superpixel-dimensionality reduction (LRS-HRFMSuperPCA) is proposed. Our framework uses the low-rank structure and sparse representation of HSI to repair the unobserved part of the original HSI caused by noise and then denoises it through a block-matching 3D algorithm. Next, the dimension of the reconstructed HSI is reduced by principal component analysis (PCA), and the dimensions of the reduced images are segmented by multi-scale entropy rate superpixels. All the principal component images with superpixels are projected into the reconstructed HSI in parallel. Secondly, PCA is once again used to reduce the dimension of all HSIs with superpixels in scale with hyperpixels. Moreover, hierarchical domain transform recursive filtering is utilized to obtain the feature images; ultimately, the decision fusion strategy based on a support vector machine (SVM) is used for classification. According to the Overall Accuracy (OA), Average Accuracy (AA) and Kappa coefficient on the three datasets (Indian Pines, University of Pavia and Salinas), the experimental results have shown that our proposed method outperforms other state-of-the-art methods. The conclusion is that LRS-HRFMSuperPCA can denoise and reconstruct the original HSI and then extract the space-spectrum joint information fully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.