Connectivity and path formation time are very important for the design and optimization in fractionated spacecraft network. Taking frequency division multiple access (FDMA) with subcarrier binary phase-shift keying (BPSK) modulation as an example, this paper focuses on the issues of constraint to orbital elements and path formation time for the noise-limited fractionated spacecraft network percolating. First, based on the proposed evolution of the dynamic topology graph in the fractionated spacecraft network, we prove the constraint condition of orbital elements for noise-limited fractionated spacecraft network percolating, and the definition of path formation time is provided and the mobility model is established. Next, we study the relationship between first docking time and spatial initial distribution and the relationship between first separating time and spatial initial distribution. These relationships provide an important basis for the orbit design in the fractionated spacecraft network. Finally, the numerical results show that the network topology for fractionated spacecraft is time-varying and dynamic. The path formation time and hop length scale linearly with path length within each orbital hyperperiod and change periodically. Besides, the time constant gradually tends to a stable value with path formation time increasing, that is, path length. These results powerfully support percolation theory further under the environment of the noise-limited fractionated spacecraft network.
The low earth orbit (LEO) mega constellation for the internet of thing (IoT) has become one of the hot spots for B5G and 6G concerns. Information-centric networking (ICN) provides a new approach to the interconnection of everything in the LEO mega constellation. In ICN, data objects are independent of location, application, storage and transport methods. Therefore, data naming is one of the fundamental issues of ICN, and research on the data naming mechanism of the LEO mega constellation for the IoT is thus the focus of this study. Adopting a fusion of hierarchical, multicomponent, and hash flat as one structure, a data naming mechanism is proposed, which can meet the needs of the IoT multiservice attributes and high-performance transmission. Additionally, prefix tokens are used to describe hierarchical names with various embedded semantic functions to support multisource content retrieval for in-network functions. To verify the performance of the proposed data naming mechanism, an NS-3-based simulation platform for LEO mega constellations for the IoT is designed and developed. The test simulation results show that, compared with the IP address, the ICN-HMcH naming mechanism can increase throughput by as much as 54% and reduce the transmission delay of the LEO mega satellites for the IoT by 53.97%. The proposed data naming mechanism can provide high quality of service (QoS) transmission performance for the LEO mega constellation for IoT and performs better than IP-based transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.