The prerequisite for the effective operation of vehicle collision warning system is that the necessary operation is not implemented. Therefore, the behavior prediction that the driver should perform when the preceding vehicle braking is the key to improve the effectiveness of the warning system. This study was conducted to acquire characteristics in the car-following behavior when confronted by the braking of the preceding vehicle, including the reaction time and operation behavior, and establish a behavior prediction model. A driving experiment on the expressway was conducted using devices, such as millimeter-wave radars and controller area network (CAN) bus data, to acquire 845 segments of car following when the brake lamps of the car ahead are on. Data analysis demonstrates that the mean of time distance of car following, mean of car-following distance, and time-to-collision (TTC) mean are closely related with whether or not the driver slowed the car down. The operation states of the driver were divided into keeping the unchanged state of the degree of accelerator pedal opening, loosening of accelerator pedal without braking, braking, and other special situations with the input variables of car-following distance, speed of driver's car, relative speed, time distance, and TTC using the support vector machine (SVM) method to build a prediction model for the operation behavior of the driver. The verification result showed that the model predicts driving behavior with an accuracy rate of 80%. It reflects the actual decision-making process of the driver, especially the normal operation of the driver, to loosen the accelerator pedal without braking. This model can help to optimize the algorithm of the rear-end accident warning system and improve intelligent system acceptance.
One of the major challenges that connected autonomous vehicles (CAVs) are facing today is driving in urban environments. To achieve this goal, CAVs need to have the ability to understand the crossing intention of pedestrians. However, for autonomous vehicles, it is quite challenging to understand pedestrians’ crossing intentions. Because the pedestrian is a very complex individual, their intention to cross the street is affected by the weather, the surrounding traffic environment, and even his own emotions. If the established street crossing intention recognition model cannot be updated in real time according to the diversity of samples, the efficiency of human-machine interaction and the interaction safety will be greatly affected. Based on the above problems, this paper established a pedestrian crossing intention model based on the online semisupervised support vector machine algorithm (OS3VM). In order to verify the effectiveness of the model, this paper collects a large amount of pedestrian crossing data and vehicle movement data based on laser scanner, and determines the main feature components of the model input through feature extraction and principal component analysis (PCA). The comparison results of recognition accuracy of SVM, S3VM, and OS3VM indicate that the proposed OS3VM model exhibits a better ability to recognize pedestrian crossing intentions than the SVM and S3VM models, and the accuracy achieves 94.83%. Therefore, the OS3VM model can reduce the number of labeled samples for training the classifier and improve the recognition accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.