The present study investigates the effects of upstream ramps on a backward-injection film cooling over a flat surface. Two ramp structures, referred to as a straight-wedge-shaped ramp (SWR) and sand-dune-shaped ramp (SDR), are considered under a series of blowing ratios ranging from M = 0.5 to M = 1.5. Regarding the backward injection, the key mechanism of upstream ramps on film cooling enhancement is suggested to be the enlargement of the horizontal scale of the separate wake vortices and the reduction of their normal dimension. When compared to the SDR, the SWR modifies the backward coolant injection well, such that a larger volume of coolant is suctioned and concentrated in the near-field region at the film-hole trailing edge. As a consequence, the SWR demonstrates a more pronounced enhancement in film cooling than the SDR in the backward-injection process, which is the opposite of the result for the forward-injection scheme. For the SWR, the backward injection provides a better film cooling effectiveness than the forward injection, regardless of blowing ratios. However, for the SDR, the backward injection could show a superior effect to the forward injection on film cooling enhancement, when the blowing ratio is beyond a critical blowing ratio. In the present SDR situation, the critical blowing ratio is identified to be M = 1.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.