The complex microstructure of lignocellulosic biomass restricts its conversion into bio-ethanol. In this study, the effects of an ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([Amim]Cl) pretreatment on the microstructure properties and cellulase hydrolysis efficiency of hybrid Pennisetum (P. americanum × P. purpureum, lignocellulosic biomass) were investigated. After the [Amim]Cl pretreatment, the bonds of lignincarbohydrate complex (LCC) and C=O in xylan were destroyed and the content of inter-molecular H-bonds O(6)H…O(3') decreased by 47.2%, while the content of intra-molecular H-bonds of O(2)H…O(6) and O(3)H…O(5) increased by 9.5% and 47.0%, respectively. The crystallinity and the crystallite size decreased by 20.8% and 42.22%, respectively, and the cellulose crystalline structure changed from cellulose crystalline I to cellulose crystalline II. The specific surface area increased from 0.15 to 10.11 m 2 /g after the [Amim]Cl pretreatment. The glucose recovery increased by 10.3 times after being pretreated with [Amim]Cl, compared with the unpretreated sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.