A complete mitogenome of Trachys auricollis is reported, and a mitogenome-based phylogenetic tree of Elateriformia with all protein-coding genes (PCGs), rRNAs, and tRNAs is presented for the first time. The complete mitochondrial genome of T. auricollis is 16,429 bp in size and contains 13 PCGs, two rRNA genes, 22 tRNA genes, and an A + T-rich region. The A + T content of the entire genome is approximately 71.1%, and the AT skew and GC skew are 0.10 and −0.20, respectively. According to the the nonsynonymous substitution rate to synonymous substitution rates (Ka/Ks) of all PCGs, the highest and lowest evolutionary rates were observed for atp8 and cox1, respectively, which is a common finding among animals. The start codons of all PCGs are the typical ATN. Ten PCGs have complete stop codons, but three have incomplete stop codons with T or TA. As calculated based on the relative synonymous codon usage (RSCU) values, UUA(L) is the codon with the highest frequency. Except for trnS1, all 22 tRNA genes exhibit typical cloverleaf structures. The A + T-rich region of T. auricollis is located between rrnS and the trnI-trnG-trnM gene cluster, with six 72-bp tandem repeats. Both maximum likelihood (ML) and Bayesian (BI) trees suggest that Buprestoidea is close to Byrrhoidea and that Buprestoidea and Byrrhoidea are sister groups of Elateroidea, but the position of Psephenidae is undetermined. The inclusion of tRNAs might help to resolve the phylogeny of Coleoptera.
The taxonomic classification of Dactylispa, a large genus of leaf-mining beetles, is problematic because it is currently based on morphology alone. Here, the first eight mitochondrial genomes of Dactylispa species, which were used to construct the first molecular phylogenies of this genus, are reported. The lengths of the eight mitogenomes range from 17,189 bp to 20,363 bp. All of the mitochondrial genomes include 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and 1 A + T-rich region. According to the nonsynonymous/synonymous mutation ratio (Ka/Ks) of all PCGs, the highest and the lowest evolutionary rates were found for atp8 and cox1, respectively, which is a common phenomenon among animals. According to relative synonymous codon usage, UUA(L) has the highest frequency. With two Gonophorini species as the outgroup, mitogenome-based phylogenetic trees of the eight Dactylispa species were constructed using maximum likelihood (ML) and Bayesian inference (BI) methods based on the PCGs, tRNAs, and rRNAs. Two DNA-based phylogenomic inferences and one protein-based phylogenomic inference support the delimitation of the subgenera Dactylispa s. str. and Platypriella as proposed in the system of Chen et al. (1986). However, the subgenus Triplispa is not recovered as monophyletic. The placement of Triplispa species requires further verification and testing with more species. We also found that both adult body shape and host plant relationship might explain the subgeneric relationships among Dactylispa beetles to a certain degree.
Downesia species are leaf-mining beetles mainly feed on Poaceae plants in the tropical and subtropical areas in Asia. In this study, we firstly sequenced and reported the complete mitochondrial genome for the genus. The complete mitogenome of Downesia tarsata is 18,557 bp in length, including 13 proteincoding genes (PCG), 22 transfer RNA (tRNA), two ribosomal RNA (rRNA), and one AT-rich region. Phylogenomic analysis indicated that D. tarsata is closely related to Agonita chinensis, and the two species belong to the same tribe of Gonophorini. The complete mitochondrial genome of D. tarsata could help clarify the phylogenetic relationship among Cassidinae species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.