SUMMARY
Anti-HER2/neu antibody therapy is reported to mediate tumor regression by interrupting oncogenic signals and/or inducing FcR-mediated cytotoxicity. Here, we demonstrate that the mechanisms of tumor regression by this therapy also require the adaptive immune response. Activation of innate immunity and T cells, initiated by antibody treatment, was necessary. Intriguingly, the addition of chemotherapeutic drugs, while capable of enhancing the reduction of tumor burden, could abrogate antibody-initiated immunity leading to decreased resistance to re-challenge or earlier relapse. Increased influx of both innate and adaptive immune cells into the tumor microenvironment by a selected immunotherapy further enhanced subsequent antibody-induced immunity, leading to increased tumor eradication and resistance to re-challenge. Therefore, this study proposes a model and strategy for anti-HER2/neu antibody-mediated tumor clearance.
Upon interaction with B7 homolog 1, Programmed Death-1 transmits a critical co-inhibitory signal to T cells to negatively regulate immune responses. By extensively searching the genomic database with the immunoglobulin variable region of PD-1, we identified a homolog and named it Programmed Death-1 homolog (PD-1H). PD-1H is broadly expressed on the cell surface of hematopoietic cells, and could be further upregulated on CD4+ and CD8+ T cells following activation. We have generated a monoclonal antibody against PD-1H, which strikingly prevents acute graft versus host disease (GVHD) in semi- and fully-allogeneic murine models, leading to full chimerism following treatment. GVHD remains a primary hindrance to successful allogeneic hematopoietic cell transplantation therapy for the treatment of hematologic malignancy. Therefore, manipulation of PD-1H function may provide a new modality for controlling T cell responses to allogeneic tissues in transplant medicine.
B7-H1 and B7-DC are ligands for PD-1, a receptor implicated in negative regulation of T and B cell functions. These ligands, however, also costimulate T cell responses. It remains elusive whether or not costimulation is mediated through PD-1. By comparative molecular modeling and site-directed mutagenesis, we found that nonconserved residues between these ligands on the A′GFCC′C′′ face mediate interaction with PD-1. This indicates significant structural heterogeneity of the interactions between PD-1 and its ligands. Importantly, ligand mutants with abolished PD-1 binding capacity could still costimulate proliferation and cytokine production of T cells from normal and PD-1–deficient mice. Our results reveal unique binding characteristics of B7-H1 and B7-DC and provide direct evidence for an independent costimulatory receptor other than PD-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.