Aniline derivatives are frequently encountered in molecules of industrial relevance such as dyes or antioxidants, which make the development of synthetic methods for the functionalization of these privileged structures highly sought-after. A general protocol for the hydroarylation of electronically diverse alkenes with anilines would be ideal to provide densely functionalized compounds. Yet, this transformation has been underexplored compared to more traditional hydroarylation of unactivated alkenes because of the significant challenges associated with the control of the selectivity and its substrate tolerance. Herein, we describe a selective, versatile and user-friendly ortho-C-alkylation of anilines with alkenes that hinges on the beneficial combination of a Lewis acid (Ca(II)) and hexafluoroisopropanol as a solvent. This protocol allows for the extension of this transformation to highly deactivated styrenes and demonstrates a remarkable improved reactivity regarding aliphatic alkenes, styrene derivatives and dienes. In addition, DFT computations were performed which, combined with experimental observations, suggest a nearly concerted mechanism that impart the ortho-selectivity.
The mechanism by which osteosarcomas metastasize is elusive, and challenges remain regarding its treatment with modalities including immunotherapy. CXCL12 is deeply involved in the process of tumor metastasis and T-cell homing, which is driven by a chemokine gradient, but healthy bones are supposed to preferentially express CXCL12. Here, we show for the first time that osteosarcomas epigenetically downregulate CXCL12 expression via DNA methyltransferase 1 (DNMT1) and consequently acquire the ability to metastasize and to impair cytotoxic T-cell homing to the tumor site. Analysis of human osteosarcoma cases further revealed that CXCL12 expression strongly correlated with overall survival. Evaluations on fresh human chemotherapy-free osteosarcoma samples also showed a positive correlation between CXCL12 concentration and the number of intratumoral lymphocytes. Critically, treatment targeting DNMT1 in immunocompetent mouse models significantly elevated expression of CXCL12 in tumors, resulting in a robust immune response and consequently eradicating early lung metastases in addition to suppressing subcutaneous tumor growth. These antitumor effects were abrogated by CXCL12-CXCR4 blockade or CD8 T-cell depletion. Collectively, our data show that CXCL12 regulation plays a significant role in both tumor progression and immune response, and targeting CXCL12 is promising for therapeutics against osteosarcoma. Epigenetic regulation of CXCL12 controls metastasis and immune response in osteosarcoma, suggesting epigenetic therapies or therapies targeting CXCL12 have potential for therapeutic intervention in osteosarcoma. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.